
NAME
sudoers - default sudo security policy plugin

DESCRIPTION
The sudoers policy plugin determines a user’s sudo privileges. It is the default sudo policy plugin. The

policy is driven by the /etc/sudoers file or, optionally in LDAP. The policy format is described in detail

in the SUDOERS FILE FORMAT section. For information on storing sudoers policy information in

LDAP, please see sudoers.ldap(5).

Configuring sudo.conf for sudoers
sudo consults the sudo.conf(5) file to determine which policy and and I/O logging plugins to load. If no

sudo.conf(5) file is present, or if it contains no Plugin lines, sudoers will be used for policy decisions and

I/O logging. To explicitly configure sudo.conf(5) to use the sudoers plugin, the following configuration

can be used.

Plugin sudoers_policy sudoers.so

Plugin sudoers_io sudoers.so

Starting with sudo 1.8.5, it is possible to specify optional arguments to the sudoers plugin in the

sudo.conf(5) file. These arguments, if present, should be listed after the path to the plugin (i.e. after

sudoers.so). Multiple arguments may be specified, separated by white space. For example:

Plugin sudoers_policy sudoers.so sudoers_mode=0400

The following plugin arguments are supported:

ldap_conf=pathname

The ldap_conf argument can be used to override the default path to the ldap.conf file.

ldap_secret=pathname

The ldap_secret argument can be used to override the default path to the ldap.secret file.

sudoers_file=pathname

The sudoers_file argument can be used to override the default path to the sudoers file.

sudoers_uid=uid

The sudoers_uid argument can be used to override the default owner of the sudoers file. It

should be specified as a numeric user ID.

sudoers_gid=gid

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

The sudoers_gid argument can be used to override the default group of the sudoers file. It

must be specified as a numeric group ID (not a group name).

sudoers_mode=mode

The sudoers_mode argument can be used to override the default file mode for the sudoers

file. It should be specified as an octal value.

For more information on configuring sudo.conf(5), please refer to its manual.

User Authentication
The sudoers security policy requires that most users authenticate themselves before they can use sudo.

A password is not required if the invoking user is root, if the target user is the same as the invoking user,

or if the policy has disabled authentication for the user or command. Unlike su(1), when sudoers
requires authentication, it validates the invoking user’s credentials, not the target user’s (or root’s)

credentials. This can be changed via the rootpw, targetpw and runaspw flags, described later.

If a user who is not listed in the policy tries to run a command via sudo, mail is sent to the proper

authorities. The address used for such mail is configurable via the mailto Defaults entry (described

later) and defaults to root.

Note that no mail will be sent if an unauthorized user tries to run sudo with the -l or -v option unless

there is an authentication error and either the mail_always or mail_badpass flags are enabled. This

allows users to determine for themselves whether or not they are allowed to use sudo. All attempts to

run sudo (successful or not) will be logged, regardless of whether or not mail is sent.

If sudo is run by root and the SUDO_USER environment variable is set, the sudoers policy will use this

value to determine who the actual user is. This can be used by a user to log commands through sudo

even when a root shell has been invoked. It also allows the -e option to remain useful even when

invoked via a sudo-run script or program. Note, however, that the sudoers file lookup is still done for

root, not the user specified by SUDO_USER.

sudoers uses per-user time stamp files for credential caching. Once a user has been authenticated, a

record is written containing the uid that was used to authenticate, the terminal session ID, and a time

stamp (using a monotonic clock if one is available). The user may then use sudo without a password for

a short period of time (5 minutes unless overridden by the timeout option). By default, sudoers uses a

separate record for each tty, which means that a user’s login sessions are authenticated separately. The

tty_tickets option can be disabled to force the use of a single time stamp for all of a user’s sessions.

Logging
sudoers can log both successful and unsuccessful attempts (as well as errors) to syslog(3), a log file, or

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

both. By default, sudoers will log via syslog(3) but this is changeable via the syslog and logfile Defaults

settings. See LOG FORMAT for a description of the log file format.

sudoers is also capable of running a command in a pseudo-tty and logging all input and/or output. The

standard input, standard output and standard error can be logged even when not associated with a

terminal. I/O logging is not on by default but can be enabled using the log_input and log_output options

as well as the LOG_INPUT and LOG_OUTPUT command tags. See I/O LOG FILES for details on

how I/O log files are stored.

Command environment
Since environment variables can influence program behavior, sudoers provides a means to restrict which

variables from the user’s environment are inherited by the command to be run. There are two distinct

ways sudoers can deal with environment variables.

By default, the env_reset option is enabled. This causes commands to be executed with a new, minimal

environment. On AIX (and Linux systems without PAM), the environment is initialized with the

contents of the /etc/environment file. On BSD systems, if the use_loginclass option is enabled, the

environment is initialized based on the path and setenv settings in /etc/login.conf. The new environment

contains the TERM, PATH, HOME, MAIL, SHELL, LOGNAME, USER, USERNAME and SUDO_*

variables in addition to variables from the invoking process permitted by the env_check and env_keep

options. This is effectively a whitelist for environment variables. Environment variables with a value

beginning with () are removed unless both the name and value parts are matched by env_keep or

env_check, as they will be interpreted as functions by older versions of the bash shell. Prior to version

1.8.11, such variables were always removed.

If, however, the env_reset option is disabled, any variables not explicitly denied by the env_check and

env_delete options are inherited from the invoking process. In this case, env_check and env_delete

behave like a blacklist. Environment variables with a value beginning with () are always removed, even

if they do not match one of the blacklists. Since it is not possible to blacklist all potentially dangerous

environment variables, use of the default env_reset behavior is encouraged.

By default, environment variables are matched by name. However, if the pattern includes an equal sign

(‘=’), both the variables name and value must match. For example, an old-style (pre-shellshock) bash
shell function could be matched as follows:

env_keep += "my_func=()*"

Without the "=()*" suffix, this would not match, as old-style bash shell functions are not preserved by

default.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

The complete list of environment variables that sudo allows or denies is contained in the output of "sudo

-V" when run as root. Please note that this list varies based on the operating system sudo is running on.

On systems that support PAM where the pam_env module is enabled for sudo, variables in the PAM

environment may be merged in to the environment. If a variable in the PAM environment is already

present in the user’s environment, the value will only be overridden if the variable was not preserved by

sudoers. When env_reset is enabled, variables preserved from the invoking user’s environment by the

env_keep list take precedence over those in the PAM environment. When env_reset is disabled,

variables present the invoking user’s environment take precedence over those in the PAM environment

unless they match a pattern in the env_delete list.

Note that the dynamic linker on most operating systems will remove variables that can control dynamic

linking from the environment of setuid executables, including sudo. Depending on the operating system

this may include _RLD*, DYLD_*, LD_*, LDR_*, LIBPATH, SHLIB_PATH, and others. These type

of variables are removed from the environment before sudo even begins execution and, as such, it is not

possible for sudo to preserve them.

As a special case, if sudo’s -i option (initial login) is specified, sudoers will initialize the environment

regardless of the value of env_reset. The DISPLAY, PATH and TERM variables remain unchanged;

HOME, MAIL, SHELL, USER, and LOGNAME are set based on the target user. On AIX (and Linux

systems without PAM), the contents of /etc/environment are also included. On BSD systems, if the

use_loginclass flag is enabled, the path and setenv variables in /etc/login.conf are also applied. All other

environment variables are removed.

Finally, if the env_file option is defined, any variables present in that file will be set to their specified

values as long as they would not conflict with an existing environment variable.

SUDOERS FILE FORMAT
The sudoers file is composed of two types of entries: aliases (basically variables) and user specifications

(which specify who may run what).

When multiple entries match for a user, they are applied in order. Where there are multiple matches, the

last match is used (which is not necessarily the most specific match).

The sudoers file grammar will be described below in Extended Backus-Naur Form (EBNF). Don’t

despair if you are unfamiliar with EBNF; it is fairly simple, and the definitions below are annotated.

Quick guide to EBNF
EBNF is a concise and exact way of describing the grammar of a language. Each EBNF definition is

made up of production rules. E.g.,

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

symbol ::= definition | alternate1 | alternate2 ...

Each production rule references others and thus makes up a grammar for the language. EBNF also

contains the following operators, which many readers will recognize from regular expressions. Do not,

however, confuse them with "wildcard" characters, which have different meanings.

? Means that the preceding symbol (or group of symbols) is optional. That is, it may appear once or

not at all.

* Means that the preceding symbol (or group of symbols) may appear zero or more times.

+ Means that the preceding symbol (or group of symbols) may appear one or more times.

Parentheses may be used to group symbols together. For clarity, we will use single quotes (’’) to

designate what is a verbatim character string (as opposed to a symbol name).

Aliases
There are four kinds of aliases: User_Alias, Runas_Alias, Host_Alias and Cmnd_Alias.

Alias ::= ’User_Alias’ User_Alias (’:’ User_Alias)* |

’Runas_Alias’ Runas_Alias (’:’ Runas_Alias)* |

’Host_Alias’ Host_Alias (’:’ Host_Alias)* |

’Cmnd_Alias’ Cmnd_Alias (’:’ Cmnd_Alias)*

User_Alias ::= NAME ’=’ User_List

Runas_Alias ::= NAME ’=’ Runas_List

Host_Alias ::= NAME ’=’ Host_List

Cmnd_Alias ::= NAME ’=’ Cmnd_List

NAME ::= [A-Z]([A-Z][0-9]_)*

Each alias definition is of the form

Alias_Type NAME = item1, item2, ...

where Alias_Type is one of User_Alias, Runas_Alias, Host_Alias, or Cmnd_Alias. A NAME is a string

of uppercase letters, numbers, and underscore characters (‘_’). A NAME must start with an uppercase

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

letter. It is possible to put several alias definitions of the same type on a single line, joined by a colon

(‘:’). E.g.,

Alias_Type NAME = item1, item2, item3 : NAME = item4, item5

It is a syntax error to redefine an existing alias. It is possible to use the same name for aliases of

different types, but this is not recommended.

The definitions of what constitutes a valid alias member follow.

User_List ::= User |

User ’,’ User_List

User ::= ’!’* user name |

’!’* #uid |

’!’* %group |

’!’* %#gid |

’!’* +netgroup |

’!’* %:nonunix_group |

’!’* %:#nonunix_gid |

’!’* User_Alias

A User_List is made up of one or more user names, user IDs (prefixed with ‘#’), system group names

and IDs (prefixed with ‘%’ and ‘%#’ respectively), netgroups (prefixed with ‘+’), non-Unix group

names and IDs (prefixed with ‘%:’ and ‘%:#’ respectively) and User_Aliases. Each list item may be

prefixed with zero or more ‘!’ operators. An odd number of ‘!’ operators negate the value of the item;

an even number just cancel each other out. User netgroups are matched using the user and domain

members only; the host member is not used when matching.

A user name, uid, group, gid, netgroup, nonunix_group or nonunix_gid may be enclosed in double

quotes to avoid the need for escaping special characters. Alternately, special characters may be

specified in escaped hex mode, e.g. \x20 for space. When using double quotes, any prefix characters

must be included inside the quotes.

The actual nonunix_group and nonunix_gid syntax depends on the underlying group provider plugin.

For instance, the QAS AD plugin supports the following formats:

+o Group in the same domain: "%:Group Name"

+o Group in any domain: "%:Group Name@FULLY.QUALIFIED.DOMAIN"

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

+o Group SID: "%:S-1-2-34-5678901234-5678901234-5678901234-567"

See GROUP PROVIDER PLUGINS for more information.

Note that quotes around group names are optional. Unquoted strings must use a backslash (‘\’) to escape

spaces and special characters. See Other special characters and reserved words for a list of characters

that need to be escaped.

Runas_List ::= Runas_Member |

Runas_Member ’,’ Runas_List

Runas_Member ::= ’!’* user name |

’!’* #uid |

’!’* %group |

’!’* %#gid |

’!’* %:nonunix_group |

’!’* %:#nonunix_gid |

’!’* +netgroup |

’!’* Runas_Alias

A Runas_List is similar to a User_List except that instead of User_Aliases it can contain Runas_Aliases.

Note that user names and groups are matched as strings. In other words, two users (groups) with the

same uid (gid) are considered to be distinct. If you wish to match all user names with the same uid (e.g.

root and toor), you can use a uid instead (#0 in the example given).

Host_List ::= Host |

Host ’,’ Host_List

Host ::= ’!’* host name |

’!’* ip_addr |

’!’* network(/netmask)? |

’!’* +netgroup |

’!’* Host_Alias

A Host_List is made up of one or more host names, IP addresses, network numbers, netgroups (prefixed

with ‘+’) and other aliases. Again, the value of an item may be negated with the ‘!’ operator. Host

netgroups are matched using the host (both qualified and unqualified) and domain members only; the

user member is not used when matching. If you specify a network number without a netmask, sudo will

query each of the local host’s network interfaces and, if the network number corresponds to one of the

hosts’s network interfaces, will use the netmask of that interface. The netmask may be specified either

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

in standard IP address notation (e.g. 255.255.255.0 or ffff:ffff:ffff:ffff::), or CIDR notation (number of

bits, e.g. 24 or 64). A host name may include shell-style wildcards (see the Wildcards section below),

but unless the host name command on your machine returns the fully qualified host name, you’ll need to

use the fqdn option for wildcards to be useful. Note that sudo only inspects actual network interfaces;

this means that IP address 127.0.0.1 (localhost) will never match. Also, the host name "localhost" will

only match if that is the actual host name, which is usually only the case for non-networked systems.

digest ::= [A-Fa-f0-9]+ |

[[A-Za-z0-9+/=]+

Digest_Spec ::= "sha224" ’:’ digest |

"sha256" ’:’ digest |

"sha384" ’:’ digest |

"sha512" ’:’ digest

Cmnd_List ::= Cmnd |

Cmnd ’,’ Cmnd_List

command name ::= file name |

file name args |

file name ’""’

Cmnd ::= Digest_Spec? ’!’* command name |

’!’* directory |

’!’* "sudoedit" |

’!’* Cmnd_Alias

A Cmnd_List is a list of one or more command names, directories, and other aliases. A command name

is a fully qualified file name which may include shell-style wildcards (see the Wildcards section below).

A simple file name allows the user to run the command with any arguments he/she wishes. However,

you may also specify command line arguments (including wildcards). Alternately, you can specify "" to

indicate that the command may only be run without command line arguments. A directory is a fully

qualified path name ending in a ‘/’. When you specify a directory in a Cmnd_List, the user will be able

to run any file within that directory (but not in any sub-directories therein).

If a Cmnd has associated command line arguments, then the arguments in the Cmnd must match exactly

those given by the user on the command line (or match the wildcards if there are any). Note that the

following characters must be escaped with a ‘\’ if they are used in command arguments: ‘,’, ‘:’, ‘=’, ‘\’.

The built-in command "sudoedit" is used to permit a user to run sudo with the -e option (or as sudoedit).
It may take command line arguments just as a normal command does. Note that "sudoedit" is a

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

command built into sudo itself and must be specified in the sudoers file without a leading path.

If a command name is prefixed with a Digest_Spec, the command will only match successfully if it can

be verified using the specified SHA-2 digest. The following digest formats are supported: sha224,

sha256, sha384 and sha512. The string may be specified in either hex or base64 format (base64 is more

compact). There are several utilities capable of generating SHA-2 digests in hex format such as openssl,

shasum, sha224sum, sha256sum, sha384sum, sha512sum.

For example, using openssl:

$ openssl dgst -sha224 /bin/ls

SHA224(/bin/ls)= 118187da8364d490b4a7debbf483004e8f3e053ec954309de2c41a25

It is also possible to use openssl to generate base64 output:

$ openssl dgst -binary -sha224 /bin/ls | openssl base64

EYGH2oNk1JC0p9679IMATo8+BT7JVDCd4sQaJQ==

Warning, if the user has write access to the command itself (directly or via a sudo command), it may be

possible for the user to replace the command after the digest check has been performed but before the

command is executed. A similar race condition exists on systems that lack the fexecve(2) system call

when the directory in which the command is located is writable by the user.

Command digests are only supported by version 1.8.7 or higher.

Defaults
Certain configuration options may be changed from their default values at run-time via one or more

Default_Entry lines. These may affect all users on any host, all users on a specific host, a specific user,

a specific command, or commands being run as a specific user. Note that per-command entries may not

include command line arguments. If you need to specify arguments, define a Cmnd_Alias and reference

that instead.

Default_Type ::= ’Defaults’ |

’Defaults’ ’@’ Host_List |

’Defaults’ ’:’ User_List |

’Defaults’ ’!’ Cmnd_List |

’Defaults’ ’>’ Runas_List

Default_Entry ::= Default_Type Parameter_List

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

Parameter_List ::= Parameter |

Parameter ’,’ Parameter_List

Parameter ::= Parameter ’=’ Value |

Parameter ’+=’ Value |

Parameter ’-=’ Value |

’!’* Parameter

Parameters may be flags, integer values, strings, or lists. Flags are implicitly boolean and can be turned

off via the ‘!’ operator. Some integer, string and list parameters may also be used in a boolean context

to disable them. Values may be enclosed in double quotes ("") when they contain multiple words.

Special characters may be escaped with a backslash (‘\’).

Lists have two additional assignment operators, += and -=. These operators are used to add to and delete

from a list respectively. It is not an error to use the -= operator to remove an element that does not exist

in a list.

Defaults entries are parsed in the following order: generic, host, user and runas Defaults first, then

command defaults. If there are multiple Defaults settings of the same type, the last matching setting is

used. The following Defaults settings are parsed before all others since they may affect subsequent

entries: fqdn, group_plugin, runas_default, sudoers_locale.

See SUDOERS OPTIONS for a list of supported Defaults parameters.

User specification
User_Spec ::= User_List Host_List ’=’ Cmnd_Spec_List \

(’:’ Host_List ’=’ Cmnd_Spec_List)*

Cmnd_Spec_List ::= Cmnd_Spec |

Cmnd_Spec ’,’ Cmnd_Spec_List

Cmnd_Spec ::= Runas_Spec? SELinux_Spec? Solaris_Priv_Spec? Tag_Spec* Cmnd

Runas_Spec ::= ’(’ Runas_List? (’:’ Runas_List)? ’)’

SELinux_Spec ::= (’ROLE=role’ | ’TYPE=type’)

Solaris_Priv_Spec ::= (’PRIVS=privset’ | ’LIMITPRIVS=privset’)

Tag_Spec ::= (’EXEC:’ | ’NOEXEC:’ | ’FOLLOW:’ | ’NOFOLLOW’ |

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

’LOG_INPUT:’ | ’NOLOG_INPUT:’ | ’LOG_OUTPUT:’ |

’NOLOG_OUTPUT:’ | ’MAIL:’ | ’NOMAIL:’ | ’PASSWD:’ |

’NOPASSWD:’ | ’SETENV:’ | ’NOSETENV:’)

A user specification determines which commands a user may run (and as what user) on specified hosts.

By default, commands are run as root, but this can be changed on a per-command basis.

The basic structure of a user specification is "who where = (as_whom) what". Let’s break that down

into its constituent parts:

Runas_Spec
A Runas_Spec determines the user and/or the group that a command may be run as. A fully-specified

Runas_Spec consists of two Runas_Lists (as defined above) separated by a colon (‘:’) and enclosed in a

set of parentheses. The first Runas_List indicates which users the command may be run as via sudo’s -u
option. The second defines a list of groups that can be specified via sudo’s -g option. If both

Runas_Lists are specified, the command may be run with any combination of users and groups listed in

their respective Runas_Lists. If only the first is specified, the command may be run as any user in the list

but no -g option may be specified. If the first Runas_List is empty but the second is specified, the

command may be run as the invoking user with the group set to any listed in the Runas_List. If both

Runas_Lists are empty, the command may only be run as the invoking user. If no Runas_Spec is

specified the command may be run as root and no group may be specified.

A Runas_Spec sets the default for the commands that follow it. What this means is that for the entry:

dgb boulder = (operator) /bin/ls, /bin/kill, /usr/bin/lprm

The user dgb may run /bin/ls, /bin/kill, and /usr/bin/lprm--but only as operator. E.g.,

$ sudo -u operator /bin/ls

It is also possible to override a Runas_Spec later on in an entry. If we modify the entry like so:

dgb boulder = (operator) /bin/ls, (root) /bin/kill, /usr/bin/lprm

Then user dgb is now allowed to run /bin/ls as operator, but /bin/kill and /usr/bin/lprm as root.

We can extend this to allow dgb to run /bin/ls with either the user or group set to operator:

dgb boulder = (operator : operator) /bin/ls, (root) /bin/kill,\

/usr/bin/lprm

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

Note that while the group portion of the Runas_Spec permits the user to run as command with that

group, it does not force the user to do so. If no group is specified on the command line, the command

will run with the group listed in the target user’s password database entry. The following would all be

permitted by the sudoers entry above:

$ sudo -u operator /bin/ls

$ sudo -u operator -g operator /bin/ls

$ sudo -g operator /bin/ls

In the following example, user tcm may run commands that access a modem device file with the dialer

group.

tcm boulder = (:dialer) /usr/bin/tip, /usr/bin/cu,\

/usr/local/bin/minicom

Note that in this example only the group will be set, the command still runs as user tcm. E.g.

$ sudo -g dialer /usr/bin/cu

Multiple users and groups may be present in a Runas_Spec, in which case the user may select any

combination of users and groups via the -u and -g options. In this example:

alan ALL = (root, bin : operator, system) ALL

user alan may run any command as either user root or bin, optionally setting the group to operator or

system.

SELinux_Spec
On systems with SELinux support, sudoers file entries may optionally have an SELinux role and/or type

associated with a command. If a role or type is specified with the command it will override any default

values specified in sudoers. A role or type specified on the command line, however, will supersede the

values in sudoers.

Solaris_Priv_Spec
On Solaris systems, sudoers file entries may optionally specify Solaris privilege set and/or limit

privilege set associated with a command. If privileges or limit privileges are specified with the

command it will override any default values specified in sudoers.

A privilege set is a comma-separated list of privilege names. The ppriv(1) command can be used to list

all privileges known to the system. For example:

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

$ ppriv -l

In addition, there are several "special" privilege strings:

none the empty set

all the set of all privileges

zone the set of all privileges available in the current zone

basic the default set of privileges normal users are granted at login time

Privileges can be excluded from a set by prefixing the privilege name with either an ‘!’ or ‘-’ character.

Tag_Spec
A command may have zero or more tags associated with it. The following tag values are supported:

EXEC, NOEXEC, FOLLOW, NOFOLLOW, LOG_INPUT, NOLOG_INPUT, LOG_OUTPUT,

NOLOG_OUTPUT, MAIL, NOMAIL, PASSWD, NOPASSWD, SETENV, and NOSETENV. Once a

tag is set on a Cmnd, subsequent Cmnds in the Cmnd_Spec_List, inherit the tag unless it is overridden

by the opposite tag (in other words, PASSWD overrides NOPASSWD and NOEXEC overrides EXEC).

EXEC and NOEXEC

If sudo has been compiled with noexec support and the underlying operating system supports it, the

NOEXEC tag can be used to prevent a dynamically-linked executable from running further commands

itself.

In the following example, user aaron may run /usr/bin/more and /usr/bin/vi but shell escapes will be

disabled.

aaron shanty = NOEXEC: /usr/bin/more, /usr/bin/vi

See the Preventing shell escapes section below for more details on how NOEXEC works and whether

or not it will work on your system.

FOLLOW and NOFOLLOWStarting with version 1.8.15, sudoedit will not open a file that is a symbolic

link unless the sudoedit_follow option is enabled. The FOLLOW and NOFOLLOW tags override the

value of sudoedit_follow and can be used to permit (or deny) the editing of symbolic links on a per-

command basis. These tags are only effective for the sudoedit command and are ignored for all other

commands.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

LOG_INPUT and NOLOG_INPUT

These tags override the value of the log_input option on a per-command basis. For more information,

see the description of log_input in the SUDOERS OPTIONS section below.

LOG_OUTPUT and NOLOG_OUTPUT

These tags override the value of the log_output option on a per-command basis. For more information,

see the description of log_output in the SUDOERS OPTIONS section below.

MAIL and NOMAIL

These tags provide fine-grained control over whether mail will be sent when a user runs a command by

overriding the value of the mail_all_cmnds option on a per-command basis. They have no effect when

sudo is run with the -l or -v options. A NOMAIL tag will also override the mail_always and

mail_no_perms options. For more information, see the descriptions of mail_all_cmnds, mail_always,

and mail_no_perms in the SUDOERS OPTIONS section below.

PASSWD and NOPASSWD

By default, sudo requires that a user authenticate him or herself before running a command. This

behavior can be modified via the NOPASSWD tag. Like a Runas_Spec, the NOPASSWD tag sets a

default for the commands that follow it in the Cmnd_Spec_List. Conversely, the PASSWD tag can be

used to reverse things. For example:

ray rushmore = NOPASSWD: /bin/kill, /bin/ls, /usr/bin/lprm

would allow the user ray to run /bin/kill, /bin/ls, and /usr/bin/lprm as root on the machine rushmore

without authenticating himself. If we only want ray to be able to run /bin/kill without a password the

entry would be:

ray rushmore = NOPASSWD: /bin/kill, PASSWD: /bin/ls, /usr/bin/lprm

Note, however, that the PASSWD tag has no effect on users who are in the group specified by the

exempt_group option.

By default, if the NOPASSWD tag is applied to any of the entries for a user on the current host, he or

she will be able to run "sudo -l" without a password. Additionally, a user may only run "sudo -v"

without a password if the NOPASSWD tag is present for all a user’s entries that pertain to the current

host. This behavior may be overridden via the verifypw and listpw options.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

SETENV and NOSETENV

These tags override the value of the setenv option on a per-command basis. Note that if SETENV has

been set for a command, the user may disable the env_reset option from the command line via the -E
option. Additionally, environment variables set on the command line are not subject to the restrictions

imposed by env_check, env_delete, or env_keep. As such, only trusted users should be allowed to set

variables in this manner. If the command matched is ALL, the SETENV tag is implied for that

command; this default may be overridden by use of the NOSETENV tag.

Wildcards
sudo allows shell-style wildcards (aka meta or glob characters) to be used in host names, path names and

command line arguments in the sudoers file. Wildcard matching is done via the glob(3) and fnmatch(3)

functions as specified by IEEE Std 1003.1 ("POSIX.1").

* Matches any set of zero or more characters (including white space).

? Matches any single character (including white space).

[...] Matches any character in the specified range.

[!...] Matches any character not in the specified range.

\x For any character ‘x’, evaluates to ‘x’. This is used to escape special characters such as: ‘*’,

‘?’, ‘[’, and ‘]’.

Note that these are not regular expressions. Unlike a regular expression there is no way to match one or

more characters within a range.

Character classes may be used if your system’s glob(3) and fnmatch(3) functions support them.

However, because the ‘:’ character has special meaning in sudoers, it must be escaped. For example:

/bin/ls [[\:alpha\:]]*

Would match any file name beginning with a letter.

Note that a forward slash (‘/’) will not be matched by wildcards used in the file name portion of the

command. This is to make a path like:

/usr/bin/*

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

match /usr/bin/who but not /usr/bin/X11/xterm.

When matching the command line arguments, however, a slash does get matched by wildcards since

command line arguments may contain arbitrary strings and not just path names.

Wildcards in command line arguments should be used with care.
Command line arguments are matched as a single, concatenated string. This mean a wildcard character

such as ‘?’ or ‘*’ will match across word boundaries, which may be unexpected. For example, while a

sudoers entry like:

%operator ALL = /bin/cat /var/log/messages*

will allow command like:

$ sudo cat /var/log/messages.1

It will also allow:

$ sudo cat /var/log/messages /etc/shadow

which is probably not what was intended. In most cases it is better to do command line processing

outside of the sudoers file in a scripting language.

Exceptions to wildcard rules
The following exceptions apply to the above rules:

"" If the empty string "" is the only command line argument in the sudoers file entry it means

that command is not allowed to be run with any arguments.

sudoedit Command line arguments to the sudoedit built-in command should always be path names, so

a forward slash (‘/’) will not be matched by a wildcard.

Including other files from within sudoers
It is possible to include other sudoers files from within the sudoers file currently being parsed using the

#include and #includedir directives.

This can be used, for example, to keep a site-wide sudoers file in addition to a local, per-machine file.

For the sake of this example the site-wide sudoers file will be /etc/sudoers and the per-machine one will

be /etc/sudoers.local. To include /etc/sudoers.local from within /etc/sudoers we would use the following

line in /etc/sudoers:

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

#include /etc/sudoers.local

When sudo reaches this line it will suspend processing of the current file (/etc/sudoers) and switch to

/etc/sudoers.local. Upon reaching the end of /etc/sudoers.local, the rest of /etc/sudoers will be

processed. Files that are included may themselves include other files. A hard limit of 128 nested

include files is enforced to prevent include file loops.

If the path to the include file is not fully-qualified (does not begin with a ‘/’, it must be located in the

same directory as the sudoers file it was included from. For example, if /etc/sudoers contains the line:

#include sudoers.local

the file that will be included is /etc/sudoers.local.

The file name may also include the %h escape, signifying the short form of the host name. In other

words, if the machine’s host name is "xerxes", then

#include /etc/sudoers.%h

will cause sudo to include the file /etc/sudoers.xerxes.

The #includedir directive can be used to create a sudoers.d directory that the system package manager

can drop sudoers file rules into as part of package installation. For example, given:

#includedir /etc/sudoers.d

sudo will read each file in /etc/sudoers.d, skipping file names that end in ‘~’ or contain a ‘.’ character to

avoid causing problems with package manager or editor temporary/backup files. Files are parsed in

sorted lexical order. That is, /etc/sudoers.d/01_first will be parsed before /etc/sudoers.d/10_second. Be

aware that because the sorting is lexical, not numeric, /etc/sudoers.d/1_whoops would be loaded after

/etc/sudoers.d/10_second. Using a consistent number of leading zeroes in the file names can be used to

avoid such problems.

Note that unlike files included via #include, visudo will not edit the files in a #includedir directory

unless one of them contains a syntax error. It is still possible to run visudo with the -f flag to edit the

files directly, but this will not catch the redefinition of an alias that is also present in a different file.

Other special characters and reserved words
The pound sign (‘#’) is used to indicate a comment (unless it is part of a #include directive or unless it

occurs in the context of a user name and is followed by one or more digits, in which case it is treated as

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

a uid). Both the comment character and any text after it, up to the end of the line, are ignored.

The reserved word ALL is a built-in alias that always causes a match to succeed. It can be used

wherever one might otherwise use a Cmnd_Alias, User_Alias, Runas_Alias, or Host_Alias. You should

not try to define your own alias called ALL as the built-in alias will be used in preference to your own.

Please note that using ALL can be dangerous since in a command context, it allows the user to run any

command on the system.

An exclamation point (‘!’) can be used as a logical not operator in a list or alias as well as in front of a

Cmnd. This allows one to exclude certain values. For the ‘!’ operator to be effective, there must be

something for it to exclude. For example, to match all users except for root one would use:

ALL,!root

If the ALL, is omitted, as in:

!root

it would explicitly deny root but not match any other users. This is different from a true "negation"

operator.

Note, however, that using a ‘!’ in conjunction with the built-in ALL alias to allow a user to run "all but a

few" commands rarely works as intended (see SECURITY NOTES below).

Long lines can be continued with a backslash (‘\’) as the last character on the line.

White space between elements in a list as well as special syntactic characters in a User Specification

(‘=’, ‘:’, ‘(’, ‘)’) is optional.

The following characters must be escaped with a backslash (‘\’) when used as part of a word (e.g. a user

name or host name): ‘!’, ‘=’, ‘:’, ‘,’, ‘(’, ‘)’, ‘\’.

SUDOERS OPTIONS
sudo’s behavior can be modified by Default_Entry lines, as explained earlier. A list of all supported

Defaults parameters, grouped by type, are listed below.

Boolean Flags:

always_query_group_plugin

If a group_plugin is configured, use it to resolve groups of the form %group as

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

long as there is not also a system group of the same name. Normally, only groups

of the form %:group are passed to the group_plugin. This flag is off by default.

always_set_home If enabled, sudo will set the HOME environment variable to the home directory of

the target user (which is root unless the -u option is used). This effectively means

that the -H option is always implied. Note that by default, HOME will be set to the

home directory of the target user when the env_reset option is enabled, so

always_set_home only has an effect for configurations where either env_reset is

disabled or HOME is present in the env_keep list. This flag is off by default.

authenticate If set, users must authenticate themselves via a password (or other means of

authentication) before they may run commands. This default may be overridden

via the PASSWD and NOPASSWD tags. This flag is on by default.

closefrom_override If set, the user may use sudo’s -C option which overrides the default starting point

at which sudo begins closing open file descriptors. This flag is off by default.

compress_io If set, and sudo is configured to log a command’s input or output, the I/O logs will

be compressed using zlib. This flag is on by default when sudo is compiled with

zlib support.

exec_background By default, sudo runs a command as the foreground process as long as sudo itself is

running in the foreground. When the exec_background flag is enabled and the

command is being run in a pty (due to I/O logging or the use_pty flag), the

command will be run as a background process. Attempts to read from the

controlling terminal (or to change terminal settings) will result in the command

being suspended with the SIGTTIN signal (or SIGTTOU in the case of terminal

settings). If this happens when sudo is a foreground process, the command will be

granted the controlling terminal and resumed in the foreground with no user

intervention required. The advantage of initially running the command in the

background is that sudo need not read from the terminal unless the command

explicitly requests it. Otherwise, any terminal input must be passed to the

command, whether it has required it or not (the kernel buffers terminals so it is not

possible to tell whether the command really wants the input). This is different from

historic sudo behavior or when the command is not being run in a pty.

For this to work seamlessly, the operating system must support the automatic

restarting of system calls. Unfortunately, not all operating systems do this by

default, and even those that do may have bugs. For example, Mac OS X fails to

restart the tcgetattr() and tcsetattr() system calls (this is a bug in Mac OS X).

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

Furthermore, because this behavior depends on the command stopping with the

SIGTTIN or SIGTTOU signals, programs that catch these signals and suspend

themselves with a different signal (usually SIGTOP) will not be automatically

foregrounded. Some versions of the linux su(1) command behave this way. This

flag is off by default.

This setting is only supported by version 1.8.7 or higher. It has no effect unless I/O

logging is enabled or the use_pty flag is enabled.

env_editor If set, visudo will use the value of the EDITOR or VISUAL environment variables

before falling back on the default editor list. Note that this may create a security

hole as it allows the user to run any arbitrary command as root without logging. A

safer alternative is to place a colon-separated list of editors in the editor variable.

visudo will then only use the EDITOR or VISUAL if they match a value specified

in editor. If the env_reset flag is enabled, the EDITOR and/or VISUAL

environment variables must be present in the env_keep list for the env_editor flag

to function when visudo is invoked via sudo. This flag is off by default.

env_reset If set, sudo will run the command in a minimal environment containing the TERM,

PATH, HOME, MAIL, SHELL, LOGNAME, USER, USERNAME and SUDO_*

variables. Any variables in the caller’s environment that match the env_keep and

env_check lists are then added, followed by any variables present in the file

specified by the env_file option (if any). The contents of the env_keep and

env_check lists, as modified by global Defaults parameters in sudoers, are

displayed when sudo is run by root with the -V option. If the secure_path option is

set, its value will be used for the PATH environment variable. This flag is on by

default.

fast_glob Normally, sudo uses the glob(3) function to do shell-style globbing when matching

path names. However, since it accesses the file system, glob(3) can take a long

time to complete for some patterns, especially when the pattern references a

network file system that is mounted on demand (auto mounted). The fast_glob

option causes sudo to use the fnmatch(3) function, which does not access the file

system to do its matching. The disadvantage of fast_glob is that it is unable to

match relative path names such as ./ls or ../bin/ls. This has security implications

when path names that include globbing characters are used with the negation

operator, ‘!’, as such rules can be trivially bypassed. As such, this option should

not be used when the sudoers file contains rules that contain negated path names

which include globbing characters. This flag is off by default.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

fqdn Set this flag if you want to put fully qualified host names in the sudoers file when

the local host name (as returned by the hostname command) does not contain the

domain name. In other words, instead of myhost you would use

myhost.mydomain.edu. You may still use the short form if you wish (and even

mix the two). This option is only effective when the "canonical" host name, as

returned by the getaddrinfo() or gethostbyname() function, is a fully-qualified

domain name. This is usually the case when the system is configured to use DNS

for host name resolution.

If the system is configured to use the /etc/hosts file in preference to DNS, the

"canonical" host name may not be fully-qualified. The order that sources are

queried for host name resolution is usually specified in the /etc/nsswitch.conf,

/etc/netsvc.conf, /etc/host.conf, or, in some cases, /etc/resolv.conf file. In the

/etc/hosts file, the first host name of the entry is considered to be the "canonical"

name; subsequent names are aliases that are not used by sudoers. For example, the

following hosts file line for the machine "xyzzy" has the fully-qualified domain

name as the "canonical" host name, and the short version as an alias.

192.168.1.1 xyzzy.sudo.ws xyzzy

If the machine’s hosts file entry is not formatted properly, the fqdn option will not

be effective if it is queried before DNS.

Beware that when using DNS for host name resolution, turning on fqdn requires

sudoers to make DNS lookups which renders sudo unusable if DNS stops working

(for example if the machine is disconnected from the network). Also note that just

like with the hosts file, you must use the "canonical" name as DNS knows it. That

is, you may not use a host alias (CNAME entry) due to performance issues and the

fact that there is no way to get all aliases from DNS.

This flag is off by default.

ignore_audit_errors Allow commands to be run even if sudoers cannot write to the audit log. If

enabled, an audit log write failure is not treated as a fatal error. If disabled, a

command may only be run after the audit event is successfully written. This flag is

only effective on systems for which sudoers supports audit logging, including

FreeBSD, Linux, Mac OS X and Solaris. This flag is on by default.

ignore_dot If set, sudo will ignore "." or "" (both denoting current directory) in the PATH

environment variable; the PATH itself is not modified. This flag is off by default.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

ignore_iolog_errors Allow commands to be run even if sudoers cannot write to the I/O log. If enabled,

an I/O log write failure is not treated as a fatal error. If disabled, the command will

be terminated if the I/O log cannot be written to. This flag is off by default.

ignore_logfile_errors

Allow commands to be run even if sudoers cannot write to the log file. If enabled,

a log file write failure is not treated as a fatal error. If disabled, a command may

only be run after the log file entry is successfully written. This flag only has an

effect when sudoers is configured to use file-based logging via the logfile option.

This flag is on by default.

ignore_local_sudoers

If set via LDAP, parsing of /etc/sudoers will be skipped. This is intended for

Enterprises that wish to prevent the usage of local sudoers files so that only LDAP

is used. This thwarts the efforts of rogue operators who would attempt to add roles

to /etc/sudoers. When this option is present, /etc/sudoers does not even need to

exist. Since this option tells sudo how to behave when no specific LDAP entries

have been matched, this sudoOption is only meaningful for the cn=defaults section.

This flag is off by default.

insults If set, sudo will insult users when they enter an incorrect password. This flag is off

by default.

log_host If set, the host name will be logged in the (non-syslog) sudo log file. This flag is

off by default.

log_input If set, sudo will run the command in a pseudo-tty and log all user input. If the

standard input is not connected to the user’s tty, due to I/O redirection or because

the command is part of a pipeline, that input is also captured and stored in a

separate log file. For more information, see the I/O LOG FILES section. This flag

is off by default.

log_output If set, sudo will run the command in a pseudo-tty and log all output that is sent to

the screen, similar to the script(1) command. For more information, see the I/O

LOG FILES section. This flag is off by default.

log_year If set, the four-digit year will be logged in the (non-syslog) sudo log file. This flag

is off by default.

long_otp_prompt When validating with a One Time Password (OTP) scheme such as S/Key or OPIE,

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

a two-line prompt is used to make it easier to cut and paste the challenge to a local

window. It’s not as pretty as the default but some people find it more convenient.

This flag is off by default.

mail_all_cmnds Send mail to the mailto user every time a user attempts to run a command via sudo
(this includes sudoedit). No mail will be sent if the user runs sudo with the -l or -v
option unless there is an authentication error and the mail_badpass flag is also set.

This flag is off by default.

mail_always Send mail to the mailto user every time a user runs sudo. This flag is off by

default.

mail_badpass Send mail to the mailto user if the user running sudo does not enter the correct

password. If the command the user is attempting to run is not permitted by sudoers
and one of the mail_all_cmnds, mail_always, mail_no_host, mail_no_perms or

mail_no_user flags are set, this flag will have no effect. This flag is off by default.

mail_no_host If set, mail will be sent to the mailto user if the invoking user exists in the sudoers

file, but is not allowed to run commands on the current host. This flag is off by

default.

mail_no_perms If set, mail will be sent to the mailto user if the invoking user is allowed to use sudo
but the command they are trying is not listed in their sudoers file entry or is

explicitly denied. This flag is off by default.

mail_no_user If set, mail will be sent to the mailto user if the invoking user is not in the sudoers

file. This flag is on by default.

match_group_by_gid

By default, when matching groups, sudoers will first resolve all the user’s group

IDs to group names and then compare those group names to any group names listed

in the sudoers file. This works well on systems where the number of groups listed

in the sudoers file is larger than the number of groups a typical user belongs to. On

systems where group lookups are slow, where users may belong to a large number

of groups, and where the number of groups listed in the sudoers file is relatively

small, it may be prohibitively expensive and running commands via sudo may take

longer than normal. On such systems it may be faster to use the

match_group_by_gid flag to avoid resolving the user’s group IDs to group names

and instead resolve all group names listed in the sudoers file, matching by group ID

instead of by group name. The match_group_by_gid flag has no effect when

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

sudoers data is stored in LDAP. This flag is off by default.

This setting is only supported by version 1.8.18 or higher.

netgroup_tuple If set, netgroup lookups will be performed using the full netgroup tuple: host name,

user name and domain (if one is set). Historically, sudo only matched the user

name and domain for netgroups used in a User_List and only matched the host

name and domain for netgroups used in a Host_List. This flag is off by default.

noexec If set, all commands run via sudo will behave as if the NOEXEC tag has been set,

unless overridden by an EXEC tag. See the description of EXEC and NOEXEC

above as well as the Preventing shell escapes section at the end of this manual.

This flag is off by default.

pam_session On systems that use PAM for authentication, sudo will create a new PAM session

for the command to be run in. Disabling pam_session may be needed on older

PAM implementations or on operating systems where opening a PAM session

changes the utmp or wtmp files. If PAM session support is disabled, resource

limits may not be updated for the command being run. If pam_session,

pam_setcred, and use_pty are disabled and I/O logging has not been configured,

sudo will execute the command directly instead of running it as a child process.

This flag is on by default.

This setting is only supported by version 1.8.7 or higher.

pam_setcred On systems that use PAM for authentication, sudo will attempt to establish

credentials for the target user by default, if supported by the underlying

authentication system. One example of a credential is a Kerberos ticket. If

pam_session, pam_setcred, and use_pty are disabled and I/O logging has not been

configured, sudo will execute the command directly instead of running it as a child

process. This flag is on by default.

This setting is only supported by version 1.8.8 or higher.

passprompt_override

The password prompt specified by passprompt will normally only be used if the

password prompt provided by systems such as PAM matches the string

"Password:". If passprompt_override is set, passprompt will always be used. This

flag is off by default.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

path_info Normally, sudo will tell the user when a command could not be found in their

PATH environment variable. Some sites may wish to disable this as it could be

used to gather information on the location of executables that the normal user does

not have access to. The disadvantage is that if the executable is simply not in the

user’s PATH, sudo will tell the user that they are not allowed to run it, which can

be confusing. This flag is on by default.

preserve_groups By default, sudo will initialize the group vector to the list of groups the target user

is in. When preserve_groups is set, the user’s existing group vector is left

unaltered. The real and effective group IDs, however, are still set to match the

target user. This flag is off by default.

pwfeedback By default, sudo reads the password like most other Unix programs, by turning off

echo until the user hits the return (or enter) key. Some users become confused by

this as it appears to them that sudo has hung at this point. When pwfeedback is set,

sudo will provide visual feedback when the user presses a key. Note that this does

have a security impact as an onlooker may be able to determine the length of the

password being entered. This flag is off by default.

requiretty If set, sudo will only run when the user is logged in to a real tty. When this flag is

set, sudo can only be run from a login session and not via other means such as

cron(8) or cgi-bin scripts. This flag is off by default.

root_sudo If set, root is allowed to run sudo too. Disabling this prevents users from

"chaining" sudo commands to get a root shell by doing something like "sudo sudo

/bin/sh". Note, however, that turning off root_sudo will also prevent root from

running sudoedit. Disabling root_sudo provides no real additional security; it

exists purely for historical reasons. This flag is on by default.

rootpw If set, sudo will prompt for the root password instead of the password of the

invoking user when running a command or editing a file. This flag is off by

default.

runaspw If set, sudo will prompt for the password of the user defined by the runas_default

option (defaults to root) instead of the password of the invoking user when running

a command or editing a file. This flag is off by default.

set_home If enabled and sudo is invoked with the -s option the HOME environment variable

will be set to the home directory of the target user (which is root unless the -u
option is used). This effectively makes the -s option imply -H. Note that HOME is

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

already set when the env_reset option is enabled, so set_home is only effective for

configurations where either env_reset is disabled or HOME is present in the

env_keep list. This flag is off by default.

set_logname Normally, sudo will set the LOGNAME, USER and USERNAME environment

variables to the name of the target user (usually root unless the -u option is given).

However, since some programs (including the RCS revision control system) use

LOGNAME to determine the real identity of the user, it may be desirable to change

this behavior. This can be done by negating the set_logname option. Note that

set_logname will have no effect if the env_reset option has not been disabled and

the env_keep list contains LOGNAME, USER or USERNAME. This flag is on by

default.

set_utmp When enabled, sudo will create an entry in the utmp (or utmpx) file when a

pseudo-tty is allocated. A pseudo-tty is allocated by sudo when the log_input,

log_output or use_pty flags are enabled. By default, the new entry will be a copy

of the user’s existing utmp entry (if any), with the tty, time, type and pid fields

updated. This flag is on by default.

setenv Allow the user to disable the env_reset option from the command line via the -E
option. Additionally, environment variables set via the command line are not

subject to the restrictions imposed by env_check, env_delete, or env_keep. As

such, only trusted users should be allowed to set variables in this manner. This flag

is off by default.

shell_noargs If set and sudo is invoked with no arguments it acts as if the -s option had been

given. That is, it runs a shell as root (the shell is determined by the SHELL

environment variable if it is set, falling back on the shell listed in the invoking

user’s /etc/passwd entry if not). This flag is off by default.

stay_setuid Normally, when sudo executes a command the real and effective UIDs are set to

the target user (root by default). This option changes that behavior such that the

real UID is left as the invoking user’s UID. In other words, this makes sudo act as

a setuid wrapper. This can be useful on systems that disable some potentially

dangerous functionality when a program is run setuid. This option is only effective

on systems that support either the setreuid(2) or setresuid(2) system call. This flag

is off by default.

sudoedit_checkdir If set, sudoedit will check all directory components of the path to be edited for

writability by the invoking user. Symbolic links will not be followed in writable

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

directories and sudoedit will refuse to edit a file located in a writable directory.

These restrictions are not enforced when sudoedit is run by root. On some systems,

if all directory components of the path to be edited are not readable by the target

user, sudoedit will be unable to edit the file. This flag is on by default.

This setting was first introduced in version 1.8.15 but initially suffered from a race

condition. The check for symbolic links in writable intermediate directories was

added in version 1.8.16.

sudoedit_follow By default, sudoedit will not follow symbolic links when opening files. The

sudoedit_follow option can be enabled to allow sudoedit to open symbolic links. It

may be overridden on a per-command basis by the FOLLOW and NOFOLLOW

tags. This flag is off by default.

This setting is only supported by version 1.8.15 or higher.

targetpw If set, sudo will prompt for the password of the user specified by the -u option

(defaults to root) instead of the password of the invoking user when running a

command or editing a file. Note that this flag precludes the use of a uid not listed

in the passwd database as an argument to the -u option. This flag is off by default.

tty_tickets If set, users must authenticate on a per-tty basis. With this flag enabled, sudo will

use a separate record in the time stamp file for each tty. If disabled, a single record

is used for all login sessions. This flag is on by default.

umask_override If set, sudo will set the umask as specified in the sudoers file without modification.

This makes it possible to specify a umask in the sudoers file that is more

permissive than the user’s own umask and matches historical behavior. If

umask_override is not set, sudo will set the umask to be the union of the user’s

umask and what is specified in sudoers. This flag is off by default.

use_loginclass If set, sudo will apply the defaults specified for the target user’s login class if one

exists. Only available if sudo is configured with the --with-logincap option. This

flag is off by default.

use_netgroups If set, netgroups (prefixed with ‘+’), may be used in place of a user or host. For

LDAP-based sudoers, netgroup support requires an expensive substring match on

the server unless the NETGROUP_BASE directive is present in the /etc/ldap.conf

file. If netgroups are not needed, this option can be disabled to reduce the load on

the LDAP server. This flag is on by default.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

use_pty If set, sudo will run the command in a pseudo-pty even if no I/O logging is being

gone. A malicious program run under sudo could conceivably fork a background

process that retains to the user’s terminal device after the main program has

finished executing. Use of this option will make that impossible. This flag is off

by default.

utmp_runas If set, sudo will store the name of the runas user when updating the utmp (or

utmpx) file. By default, sudo stores the name of the invoking user. This flag is off

by default.

visiblepw By default, sudo will refuse to run if the user must enter a password but it is not

possible to disable echo on the terminal. If the visiblepw flag is set, sudo will

prompt for a password even when it would be visible on the screen. This makes it

possible to run things like "ssh somehost sudo ls" since by default, ssh(1) does not

allocate a tty when running a command. This flag is off by default.

Integers:

closefrom Before it executes a command, sudo will close all open file descriptors other than

standard input, standard output and standard error (ie: file descriptors 0-2). The

closefrom option can be used to specify a different file descriptor at which to start

closing. The default is 3.

maxseq The maximum sequence number that will be substituted for the "%{seq}" escape in

the I/O log file (see the iolog_dir description above for more information). While

the value substituted for "%{seq}" is in base 36, maxseq itself should be expressed

in decimal. Values larger than 2176782336 (which corresponds to the base 36

sequence number "ZZZZZZ") will be silently truncated to 2176782336. The

default value is 2176782336.

Once the local sequence number reaches the value of maxseq, it will "roll over" to

zero, after which sudoers will truncate and re-use any existing I/O log path names.

This setting is only supported by version 1.8.7 or higher.

passwd_tries The number of tries a user gets to enter his/her password before sudo logs the

failure and exits. The default is 3.

Integers that can be used in a boolean context:

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

loglinelen Number of characters per line for the file log. This value is used to decide when to

wrap lines for nicer log files. This has no effect on the syslog log file, only the file

log. The default is 80 (use 0 or negate the option to disable word wrap).

passwd_timeout Number of minutes before the sudo password prompt times out, or 0 for no

timeout. The timeout may include a fractional component if minute granularity is

insufficient, for example 2.5. The default is 5.

timestamp_timeout Number of minutes that can elapse before sudo will ask for a passwd again. The

timeout may include a fractional component if minute granularity is insufficient,

for example 2.5. The default is 5. Set this to 0 to always prompt for a password.

If set to a value less than 0 the user’s time stamp will not expire until the system is

rebooted. This can be used to allow users to create or delete their own time stamps

via "sudo -v" and "sudo -k" respectively.

umask Umask to use when running the command. Negate this option or set it to 0777 to

preserve the user’s umask. The actual umask that is used will be the union of the

user’s umask and the value of the umask option, which defaults to 0022. This

guarantees that sudo never lowers the umask when running a command. Note: on

systems that use PAM, the default PAM configuration may specify its own umask

which will override the value set in sudoers.

Strings:

badpass_message Message that is displayed if a user enters an incorrect password. The default is

Sorry, try again. unless insults are enabled.

editor A colon (‘:’) separated list of editors allowed to be used with visudo. visudo will

choose the editor that matches the user’s EDITOR or VISUAL environment

variable if possible, or the first editor in the list that exists and is executable. Note

that the EDITOR and VISUAL environment variables are not preserved by default

when the env_reset option is enabled. The default is vi.

iolog_dir The top-level directory to use when constructing the path name for the input/output

log directory. Only used if the log_input or log_output options are enabled or

when the LOG_INPUT or LOG_OUTPUT tags are present for a command. The

session sequence number, if any, is stored in the directory. The default is

/var/log/sudo-io.

The following percent (‘%’) escape sequences are supported:

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

%{seq}

expanded to a monotonically increasing base-36 sequence number, such as

0100A5, where every two digits are used to form a new directory, e.g.

01/00/A5

%{user}

expanded to the invoking user’s login name

%{group}

expanded to the name of the invoking user’s real group ID

%{runas_user}

expanded to the login name of the user the command will be run as (e.g.

root)

%{runas_group}

expanded to the group name of the user the command will be run as (e.g.

wheel)

%{hostname}

expanded to the local host name without the domain name

%{command}

expanded to the base name of the command being run

In addition, any escape sequences supported by the system’s strftime(3) function

will be expanded.

To include a literal ‘%’ character, the string ‘%%’ should be used.

iolog_file The path name, relative to iolog_dir, in which to store input/output logs when the

log_input or log_output options are enabled or when the LOG_INPUT or

LOG_OUTPUT tags are present for a command. Note that iolog_file may contain

directory components. The default is "%{seq}".

See the iolog_dir option above for a list of supported percent (‘%’) escape

sequences.

In addition to the escape sequences, path names that end in six or more Xs will

have the Xs replaced with a unique combination of digits and letters, similar to the

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

mktemp(3) function.

If the path created by concatenating iolog_dir and iolog_file already exists, the

existing I/O log file will be truncated and overwritten unless iolog_file ends in six

or more Xs.

iolog_group The group name to look up when setting the group ID on new I/O log files and

directories. By default, I/O log files and directories inherit the group ID of the

parent directory.

This setting is only supported by version 1.8.19 or higher.

iolog_mode The file permision mode to use when creating I/O log files, mode bits other than

0666 are ignored. When creating I/O log directories, search (execute) bits are

added to to match the read and write bits specified by iolog_mode. Defaults to

0600.

This setting is only supported by version 1.8.19 or higher.

iolog_user The user name to look up when setting the user ID on new I/O log files and

directories. By default, I/O log files and directories are owned by the superuser

(user ID 0).

This setting is only supported by version 1.8.19 or higher.

lecture_status_dir The directory in which sudo stores per-user lecture status files. Once a user has

received the lecture, a zero-length file is created in this directory so that sudo will

not lecture the user again. This directory should not be cleared when the system

reboots. The default is /var/adm/sudo/lectured.

limitprivs The default Solaris limit privileges to use when constructing a new privilege set for

a command. This bounds all privileges of the executing process. The default limit

privileges may be overridden on a per-command basis in sudoers. This option is

only available if sudoers is built on Solaris 10 or higher.

mailsub Subject of the mail sent to the mailto user. The escape %h will expand to the host

name of the machine. Default is "*** SECURITY information for %h ***".

noexec_file As of sudo version 1.8.1 this option is no longer supported. The path to the noexec

file should now be set in the sudo.conf(5) file.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

pam_login_service On systems that use PAM for authentication, this is the service name used when the

-i option is specified. The default value is "sudo". See the description of

pam_service for more information.

This setting is only supported by version 1.8.8 or higher.

pam_service On systems that use PAM for authentication, the service name specifies the PAM

policy to apply. This usually corresponds to an entry in the pam.conf file or a file

in the /etc/pam.d directory. The default value is "sudo".

This setting is only supported by version 1.8.8 or higher.

passprompt The default prompt to use when asking for a password; can be overridden via the -p
option or the SUDO_PROMPT environment variable. The following percent (‘%’)

escape sequences are supported:

%H expanded to the local host name including the domain name (only if the

machine’s host name is fully qualified or the fqdn option is set)

%h expanded to the local host name without the domain name

%p expanded to the user whose password is being asked for (respects the rootpw,

targetpw and runaspw flags in sudoers)

%U expanded to the login name of the user the command will be run as (defaults

to root)

%u expanded to the invoking user’s login name

%% two consecutive % characters are collapsed into a single % character

The default value is "Password:".

privs The default Solaris privileges to use when constructing a new privilege set for a

command. This is passed to the executing process via the inherited privilege set,

but is bounded by the limit privileges. If the privs option is specified but the

limitprivs option is not, the limit privileges of the executing process is set to privs.

The default privileges may be overridden on a per-command basis in sudoers. This

option is only available if sudoers is built on Solaris 10 or higher.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

role The default SELinux role to use when constructing a new security context to run

the command. The default role may be overridden on a per-command basis in the

sudoers file or via command line options. This option is only available when sudo
is built with SELinux support.

runas_default The default user to run commands as if the -u option is not specified on the

command line. This defaults to root.

syslog_badpri Syslog priority to use when the user is not allowed to run a command or when

authentication is unsuccessful. Defaults to alert.

The following syslog priorities are supported: alert, crit, debug, emerg, err, info,

notice, warning, and none. Negating the option or setting it to a value of none will

disable logging of unsuccessful commands.

syslog_goodpri Syslog priority to use when the user is allowed to run a command and

authentication is successful. Defaults to notice.

See syslog_badpri for the list of supported syslog priorities. Negating the option or

setting it to a value of none will disable logging of successful commands.

syslog_goodpri

syslog_maxlen On many systems, syslog(3) has a relatively small log buffer. IETF RFC 5424

states that syslog servers must support messages of at least 480 bytes and should

support messages up to 2048 bytes. By default, sudoers creates log messages up to

980 bytes which corresponds to the historic BSD syslog implementation which

used a 1024 byte buffer to store the message, date, hostname and program name.

To prevent syslog messages from being truncated, sudoers will split up log

messages that are larger than syslog_maxlen bytes. When a message is split,

additional parts will include the string "(command continued)" after the user name

and before the continued command line arguments.

This setting is only supported by version 1.8.19 or higher.

sudoers_locale Locale to use when parsing the sudoers file, logging commands, and sending email.

Note that changing the locale may affect how sudoers is interpreted. Defaults to

"C".

timestampdir The directory in which sudo stores its time stamp files. This directory should be

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

cleared when the system reboots. The default is /var/run/sudo/ts.

timestampowner The owner of the lecture status directory, time stamp directory and all files stored

therein. The default is root.

type The default SELinux type to use when constructing a new security context to run

the command. The default type may be overridden on a per-command basis in the

sudoers file or via command line options. This option is only available when sudo
is built with SELinux support.

Strings that can be used in a boolean context:

env_file The env_file option specifies the fully qualified path to a file containing variables to be

set in the environment of the program being run. Entries in this file should either be of

the form "VARIABLE=value" or "export VARIABLE=value". The value may

optionally be surrounded by single or double quotes. Variables in this file are subject to

other sudo environment settings such as env_keep and env_check.

exempt_group Users in this group are exempt from password and PATH requirements. The group

name specified should not include a % prefix. This is not set by default.

group_plugin A string containing a sudoers group plugin with optional arguments. The string should

consist of the plugin path, either fully-qualified or relative to the /usr/local/libexec/sudo

directory, followed by any configuration arguments the plugin requires. These

arguments (if any) will be passed to the plugin’s initialization function. If arguments are

present, the string must be enclosed in double quotes ("").

For more information see GROUP PROVIDER PLUGINS.

lecture This option controls when a short lecture will be printed along with the password

prompt. It has the following possible values:

always Always lecture the user.

never Never lecture the user.

once Only lecture the user the first time they run sudo.

If no value is specified, a value of once is implied. Negating the option results in a

value of never being used. The default value is once.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

lecture_file Path to a file containing an alternate sudo lecture that will be used in place of the

standard lecture if the named file exists. By default, sudo uses a built-in lecture.

listpw This option controls when a password will be required when a user runs sudo with the -l
option. It has the following possible values:

all All the user’s sudoers file entries for the current host must have the

NOPASSWD flag set to avoid entering a password.

always The user must always enter a password to use the -l option.

any At least one of the user’s sudoers file entries for the current host must have

the NOPASSWD flag set to avoid entering a password.

never The user need never enter a password to use the -l option.

If no value is specified, a value of any is implied. Negating the option results in a value

of never being used. The default value is any.

logfile Path to the sudo log file (not the syslog log file). Setting a path turns on logging to a

file; negating this option turns it off. By default, sudo logs via syslog.

mailerflags Flags to use when invoking mailer. Defaults to -t.

mailerpath Path to mail program used to send warning mail. Defaults to the path to sendmail found

at configure time.

mailfrom Address to use for the "from" address when sending warning and error mail. The

address should be enclosed in double quotes ("") to protect against sudo interpreting the

@ sign. Defaults to the name of the user running sudo.

mailto Address to send warning and error mail to. The address should be enclosed in double

quotes ("") to protect against sudo interpreting the @ sign. Defaults to root.

secure_path Path used for every command run from sudo. If you don’t trust the people running sudo
to have a sane PATH environment variable you may want to use this. Another use is if

you want to have the "root path" be separate from the "user path". Users in the group

specified by the exempt_group option are not affected by secure_path. This option is

not set by default.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

syslog Syslog facility if syslog is being used for logging (negate to disable syslog logging).

Defaults to auth.

The following syslog facilities are supported: authpriv (if your OS supports it), auth,

daemon, user, local0, local1, local2, local3, local4, local5, local6, and local7.

verifypw This option controls when a password will be required when a user runs sudo with the -v
option. It has the following possible values:

all All the user’s sudoers file entries for the current host must have the

NOPASSWD flag set to avoid entering a password.

always The user must always enter a password to use the -v option.

any At least one of the user’s sudoers file entries for the current host must have the

NOPASSWD flag set to avoid entering a password.

never The user need never enter a password to use the -v option.

If no value is specified, a value of all is implied. Negating the option results in a value

of never being used. The default value is all.

Lists that can be used in a boolean context:

env_check Environment variables to be removed from the user’s environment unless they are

considered "safe". For all variables except TZ, "safe" means that the variable’s

value does not contain any ‘%’ or ‘/’ characters. This can be used to guard against

printf-style format vulnerabilities in poorly-written programs. The TZ variable is

considered unsafe if any of the following are true:

+o It consists of a fully-qualified path name, optionally prefixed with a colon (‘:’),

that does not match the location of the zoneinfo directory.

+o It contains a .. path element.

+o It contains white space or non-printable characters.

+o It is longer than the value of PATH_MAX.

The argument may be a double-quoted, space-separated list or a single value

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

without double-quotes. The list can be replaced, added to, deleted from, or

disabled by using the =, +=, -=, and ! operators respectively. Regardless of

whether the env_reset option is enabled or disabled, variables specified by

env_check will be preserved in the environment if they pass the aforementioned

check. The global list of environment variables to check is displayed when sudo is

run by root with the -V option.

env_delete Environment variables to be removed from the user’s environment when the

env_reset option is not in effect. The argument may be a double-quoted, space-

separated list or a single value without double-quotes. The list can be replaced,

added to, deleted from, or disabled by using the =, +=, -=, and ! operators

respectively. The global list of environment variables to remove is displayed when

sudo is run by root with the -V option. Note that many operating systems will

remove potentially dangerous variables from the environment of any setuid process

(such as sudo).

env_keep Environment variables to be preserved in the user’s environment when the

env_reset option is in effect. This allows fine-grained control over the environment

sudo-spawned processes will receive. The argument may be a double-quoted,

space-separated list or a single value without double-quotes. The list can be

replaced, added to, deleted from, or disabled by using the =, +=, -=, and ! operators

respectively. The global list of variables to keep is displayed when sudo is run by

root with the -V option.

GROUP PROVIDER PLUGINS
The sudoers plugin supports its own plugin interface to allow non-Unix group lookups which can query

a group source other than the standard Unix group database. This can be used to implement support for

the nonunix_group syntax described earlier.

Group provider plugins are specified via the group_plugin Defaults setting. The argument to

group_plugin should consist of the plugin path, either fully-qualified or relative to the

/usr/local/libexec/sudo directory, followed by any configuration options the plugin requires. These

options (if specified) will be passed to the plugin’s initialization function. If options are present, the

string must be enclosed in double quotes ("").

The following group provider plugins are installed by default:

group_file

The group_file plugin supports an alternate group file that uses the same syntax as the

/etc/group file. The path to the group file should be specified as an option to the plugin. For

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

example, if the group file to be used is /etc/sudo-group:

Defaults group_plugin="group_file.so /etc/sudo-group"

system_group

The system_group plugin supports group lookups via the standard C library functions

getgrnam() and getgrid(). This plugin can be used in instances where the user belongs to

groups not present in the user’s supplemental group vector. This plugin takes no options:

Defaults group_plugin=system_group.so

The group provider plugin API is described in detail in sudo_plugin(8).

LOG FORMAT
sudoers can log events using either syslog(3) or a simple log file. The log format is almost identical in

both cases.

Accepted command log entries
Commands that sudo runs are logged using the following format (split into multiple lines for

readability):

date hostname progname: username : TTY=ttyname ; PWD=cwd ; \

USER=runasuser ; GROUP=runasgroup ; TSID=logid ; \

ENV=env_vars COMMAND=command

Where the fields are as follows:

date The date the command was run. Typically, this is in the format "MMM, DD,

HH:MM:SS". If logging via syslog(3), the actual date format is controlled by the syslog

daemon. If logging to a file and the log_year option is enabled, the date will also

include the year.

hostname The name of the host sudo was run on. This field is only present when logging via

syslog(3).

progname The name of the program, usually sudo or sudoedit. This field is only present when

logging via syslog(3).

username The login name of the user who ran sudo.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

ttyname The short name of the terminal (e.g. "console", "tty01", or "pts/0") sudo was run on, or

"unknown" if there was no terminal present.

cwd The current working directory that sudo was run in.

runasuser The user the command was run as.

runasgroup The group the command was run as if one was specified on the command line.

logid An I/O log identifier that can be used to replay the command’s output. This is only

present when the log_input or log_output option is enabled.

env_vars A list of environment variables specified on the command line, if specified.

command The actual command that was executed.

Messages are logged using the locale specified by sudoers_locale, which defaults to the "C" locale.

Denied command log entries
If the user is not allowed to run the command, the reason for the denial will follow the user name.

Possible reasons include:

user NOT in sudoers

The user is not listed in the sudoers file.

user NOT authorized on host

The user is listed in the sudoers file but is not allowed to run commands on the host.

command not allowed

The user is listed in the sudoers file for the host but they are not allowed to run the specified

command.

3 incorrect password attempts

The user failed to enter their password after 3 tries. The actual number of tries will vary based on the

number of failed attempts and the value of the passwd_tries option.

a password is required

sudo’s -n option was specified but a password was required.

sorry, you are not allowed to set the following environment variables

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

The user specified environment variables on the command line that were not allowed by sudoers.

Error log entries
If an error occurs, sudoers will log a message and, in most cases, send a message to the administrator via

email. Possible errors include:

parse error in /etc/sudoers near line N

sudoers encountered an error when parsing the specified file. In some cases, the actual error may be

one line above or below the line number listed, depending on the type of error.

problem with defaults entries

The sudoers file contains one or more unknown Defaults settings. This does not prevent sudo from

running, but the sudoers file should be checked using visudo.

timestamp owner (username): No such user

The time stamp directory owner, as specified by the timestampowner setting, could not be found in

the password database.

unable to open/read /etc/sudoers

The sudoers file could not be opened for reading. This can happen when the sudoers file is located on

a remote file system that maps user ID 0 to a different value. Normally, sudoers tries to open the

sudoers file using group permissions to avoid this problem. Consider either changing the ownership

of /etc/sudoers or adding an argument like "sudoers_uid=N" (where ‘N’ is the user ID that owns the

sudoers file) to the end of the sudoers Plugin line in the sudo.conf(5) file.

unable to stat /etc/sudoers

The /etc/sudoers file is missing.

/etc/sudoers is not a regular file

The /etc/sudoers file exists but is not a regular file or symbolic link.

/etc/sudoers is owned by uid N, should be 0

The sudoers file has the wrong owner. If you wish to change the sudoers file owner, please add

"sudoers_uid=N" (where ‘N’ is the user ID that owns the sudoers file) to the sudoers Plugin line in the

sudo.conf(5) file.

/etc/sudoers is world writable

The permissions on the sudoers file allow all users to write to it. The sudoers file must not be world-

writable, the default file mode is 0440 (readable by owner and group, writable by none). The default

mode may be changed via the "sudoers_mode" option to the sudoers Plugin line in the sudo.conf(5)

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

file.

/etc/sudoers is owned by gid N, should be 1

The sudoers file has the wrong group ownership. If you wish to change the sudoers file group

ownership, please add "sudoers_gid=N" (where ‘N’ is the group ID that owns the sudoers file) to the

sudoers Plugin line in the sudo.conf(5) file.

unable to open /var/run/sudo/ts/username

sudoers was unable to read or create the user’s time stamp file. This can happen when

timestampowner is set to a user other than root and the mode on /var/run/sudo is not searchable by

group or other. The default mode for /var/run/sudo is 0711.

unable to write to /var/run/sudo/ts/username

sudoers was unable to write to the user’s time stamp file.

/var/run/sudo/ts is owned by uid X, should be Y

The time stamp directory is owned by a user other than timestampowner. This can occur when the

value of timestampowner has been changed. sudoers will ignore the time stamp directory until the

owner is corrected.

/var/run/sudo/ts is group writable

The time stamp directory is group-writable; it should be writable only by timestampowner. The

default mode for the time stamp directory is 0700. sudoers will ignore the time stamp directory until

the mode is corrected.

Notes on logging via syslog
By default, sudoers logs messages via syslog(3). The date, hostname, and progname fields are added by

the system’s syslog() function, not sudoers itself. As such, they may vary in format on different

systems.

The maximum size of syslog messages varies from system to system. The syslog_maxlen setting can be

used to change the maximum syslog message size from the default value of 980 bytes. For more

information, see the description of syslog_maxlen.

Notes on logging to a file
If the logfile option is set, sudoers will log to a local file, such as /var/log/sudo. When logging to a file,

sudoers uses a format similar to syslog(3), with a few important differences:

1. The progname and hostname fields are not present.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

2. If the log_year option is enabled, the date will also include the year.

3. Lines that are longer than loglinelen characters (80 by default) are word-wrapped and continued on

the next line with a four character indent. This makes entries easier to read for a human being, but

makes it more difficult to use grep(1) on the log files. If the loglinelen option is set to 0 (or negated

with a ‘!’), word wrap will be disabled.

I/O LOG FILES
When I/O logging is enabled, sudo will run the command in a pseudo-tty and log all user input and/or

output. I/O is logged to the directory specified by the iolog_dir option (/var/log/sudo-io by default)

using a unique session ID that is included in the sudo log line, prefixed with "TSID=". The iolog_file

option may be used to control the format of the session ID.

Each I/O log is stored in a separate directory that contains the following files:

log a text file containing the time the command was run, the name of the user who ran sudo, the

name of the target user, the name of the target group (optional), the terminal that sudo was

run from, the number of rows and columns of the terminal, the working directory the

command was run from and the path name of the command itself (with arguments if present)

timing a log of the amount of time between, and the number of bytes in, each I/O log entry (used for

session playback)

ttyin input from the user’s tty (what the user types)

stdin input from a pipe or file

ttyout output from the pseudo-tty (what the command writes to the screen)

stdout standard output to a pipe or redirected to a file

stderr standard error to a pipe or redirected to a file

All files other than log are compressed in gzip format unless the compress_io option has been disabled.

Due to buffering, the I/O log data will not be complete until the sudo command has completed. The

output portion of an I/O log file can be viewed with the sudoreplay(8) utility, which can also be used to

list or search the available logs.

Note that user input may contain sensitive information such as passwords (even if they are not echoed to

the screen), which will be stored in the log file unencrypted. In most cases, logging the command output

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

via log_output or LOG_OUTPUT is all that is required.

Since each session’s I/O logs are stored in a separate directory, traditional log rotation utilities cannot be

used to limit the number of I/O logs. The simplest way to limit the number of I/O is by setting the

maxseq option to the maximum number of logs you wish to store. Once the I/O log sequence number

reaches maxseq, it will be reset to zero and sudoers will truncate and re-use any existing I/O logs.

FILES
/etc/sudo.conf Sudo front end configuration

/etc/sudoers List of who can run what

/etc/group Local groups file

/etc/netgroup List of network groups

/var/log/sudo-io I/O log files

/var/run/sudo/ts Directory containing time stamps for the sudoers security policy

/var/adm/sudo/lectured Directory containing lecture status files for the sudoers security policy

/etc/environment Initial environment for -i mode on AIX and Linux systems

EXAMPLES
Below are example sudoers file entries. Admittedly, some of these are a bit contrived. First, we allow a

few environment variables to pass and then define our aliases:

Run X applications through sudo; HOME is used to find the

.Xauthority file. Note that other programs use HOME to find

configuration files and this may lead to privilege escalation!

Defaults env_keep += "DISPLAY HOME"

User alias specification

User_Alias FULLTIMERS = millert, mikef, dowdy

User_Alias PARTTIMERS = bostley, jwfox, crawl

User_Alias WEBMASTERS = will, wendy, wim

Runas alias specification

Runas_Alias OP = root, operator

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

Runas_Alias DB = oracle, sybase

Runas_Alias ADMINGRP = adm, oper

Host alias specification

Host_Alias SPARC = bigtime, eclipse, moet, anchor :\

SGI = grolsch, dandelion, black :\

ALPHA = widget, thalamus, foobar :\

HPPA = boa, nag, python

Host_Alias CUNETS = 128.138.0.0/255.255.0.0

Host_Alias CSNETS = 128.138.243.0, 128.138.204.0/24, 128.138.242.0

Host_Alias SERVERS = master, mail, www, ns

Host_Alias CDROM = orion, perseus, hercules

Cmnd alias specification

Cmnd_Alias DUMPS = /usr/bin/mt, /usr/sbin/dump, /usr/sbin/rdump,\

/usr/sbin/restore, /usr/sbin/rrestore,\

sha224:0GomF8mNN3wlDt1HD9XldjJ3SNgpFdbjO1+NsQ== \

/home/operator/bin/start_backups

Cmnd_Alias KILL = /usr/bin/kill

Cmnd_Alias PRINTING = /usr/sbin/lpc, /usr/bin/lprm

Cmnd_Alias SHUTDOWN = /usr/sbin/shutdown

Cmnd_Alias HALT = /usr/sbin/halt

Cmnd_Alias REBOOT = /usr/sbin/reboot

Cmnd_Alias SHELLS = /usr/bin/sh, /usr/bin/csh, /usr/bin/ksh,\

/usr/local/bin/tcsh, /usr/bin/rsh,\

/usr/local/bin/zsh

Cmnd_Alias SU = /usr/bin/su

Cmnd_Alias PAGERS = /usr/bin/more, /usr/bin/pg, /usr/bin/less

Here we override some of the compiled in default values. We want sudo to log via syslog(3) using the

auth facility in all cases. We don’t want to subject the full time staff to the sudo lecture, user millert
need not give a password, and we don’t want to reset the LOGNAME, USER or USERNAME

environment variables when running commands as root. Additionally, on the machines in the

SERVERS Host_Alias, we keep an additional local log file and make sure we log the year in each log

line since the log entries will be kept around for several years. Lastly, we disable shell escapes for the

commands in the PAGERS Cmnd_Alias (/usr/bin/more, /usr/bin/pg and /usr/bin/less). Note that this

will not effectively constrain users with sudo ALL privileges.

Override built-in defaults

Defaults syslog=auth

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

Defaults>root !set_logname

Defaults:FULLTIMERS !lecture

Defaults:millert !authenticate

Defaults@SERVERS log_year, logfile=/var/log/sudo.log

Defaults!PAGERS noexec

The User specification is the part that actually determines who may run what.

root ALL = (ALL) ALL

%wheel ALL = (ALL) ALL

We let root and any user in group wheel run any command on any host as any user.

FULLTIMERS ALL = NOPASSWD: ALL

Full time sysadmins (millert, mikef, and dowdy) may run any command on any host without

authenticating themselves.

PARTTIMERS ALL = ALL

Part time sysadmins bostley, jwfox, and crawl) may run any command on any host but they must

authenticate themselves first (since the entry lacks the NOPASSWD tag).

jack CSNETS = ALL

The user jack may run any command on the machines in the CSNETS alias (the networks

128.138.243.0, 128.138.204.0, and 128.138.242.0). Of those networks, only 128.138.204.0 has an

explicit netmask (in CIDR notation) indicating it is a class C network. For the other networks in

CSNETS, the local machine’s netmask will be used during matching.

lisa CUNETS = ALL

The user lisa may run any command on any host in the CUNETS alias (the class B network

128.138.0.0).

operator ALL = DUMPS, KILL, SHUTDOWN, HALT, REBOOT, PRINTING,\

sudoedit /etc/printcap, /usr/oper/bin/

The operator user may run commands limited to simple maintenance. Here, those are commands related

to backups, killing processes, the printing system, shutting down the system, and any commands in the

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

directory /usr/oper/bin/. Note that one command in the DUMPS Cmnd_Alias includes a sha224 digest,

/home/operator/bin/start_backups. This is because the directory containing the script is writable by the

operator user. If the script is modified (resulting in a digest mismatch) it will no longer be possible to

run it via sudo.

joe ALL = /usr/bin/su operator

The user joe may only su(1) to operator.

pete HPPA = /usr/bin/passwd [A-Za-z]*, !/usr/bin/passwd root

%opers ALL = (: ADMINGRP) /usr/sbin/

Users in the opers group may run commands in /usr/sbin/ as themselves with any group in the

ADMINGRP Runas_Alias (the adm and oper groups).

The user pete is allowed to change anyone’s password except for root on the HPPA machines. Because

command line arguments are matched as a single, concatenated string, the ‘*’ wildcard will match

multiple words. This example assumes that passwd(1) does not take multiple user names on the

command line. Note that on GNU systems, options to passwd(1) may be specified after the user

argument. As a result, this rule will also allow:

passwd username --expire

which may not be desirable.

bob SPARC = (OP) ALL : SGI = (OP) ALL

The user bob may run anything on the SPARC and SGI machines as any user listed in the OP

Runas_Alias (root and operator.)

jim +biglab = ALL

The user jim may run any command on machines in the biglab netgroup. sudo knows that "biglab" is a

netgroup due to the ‘+’ prefix.

+secretaries ALL = PRINTING, /usr/bin/adduser, /usr/bin/rmuser

Users in the secretaries netgroup need to help manage the printers as well as add and remove users, so

they are allowed to run those commands on all machines.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

fred ALL = (DB) NOPASSWD: ALL

The user fred can run commands as any user in the DB Runas_Alias (oracle or sybase) without giving a

password.

john ALPHA = /usr/bin/su [!-]*, !/usr/bin/su *root*

On the ALPHA machines, user john may su to anyone except root but he is not allowed to specify any

options to the su(1) command.

jen ALL, !SERVERS = ALL

The user jen may run any command on any machine except for those in the SERVERS Host_Alias

(master, mail, www and ns).

jill SERVERS = /usr/bin/, !SU, !SHELLS

For any machine in the SERVERS Host_Alias, jill may run any commands in the directory /usr/bin/

except for those commands belonging to the SU and SHELLS Cmnd_Aliases. While not specifically

mentioned in the rule, the commands in the PAGERS Cmnd_Alias all reside in /usr/bin and have the

noexec option set.

steve CSNETS = (operator) /usr/local/op_commands/

The user steve may run any command in the directory /usr/local/op_commands/ but only as user

operator.

matt valkyrie = KILL

On his personal workstation, valkyrie, matt needs to be able to kill hung processes.

WEBMASTERS www = (www) ALL, (root) /usr/bin/su www

On the host www, any user in the WEBMASTERS User_Alias (will, wendy, and wim), may run any

command as user www (which owns the web pages) or simply su(1) to www.

ALL CDROM = NOPASSWD: /sbin/umount /CDROM,\

/sbin/mount -o nosuid\,nodev /dev/cd0a /CDROM

Any user may mount or unmount a CD-ROM on the machines in the CDROM Host_Alias (orion,

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

perseus, hercules) without entering a password. This is a bit tedious for users to type, so it is a prime

candidate for encapsulating in a shell script.

SECURITY NOTES
Limitations of the ‘!’ operator
It is generally not effective to "subtract" commands from ALL using the ‘!’ operator. A user can

trivially circumvent this by copying the desired command to a different name and then executing that.

For example:

bill ALL = ALL, !SU, !SHELLS

Doesn’t really prevent bill from running the commands listed in SU or SHELLS since he can simply

copy those commands to a different name, or use a shell escape from an editor or other program.

Therefore, these kind of restrictions should be considered advisory at best (and reinforced by policy).

In general, if a user has sudo ALL there is nothing to prevent them from creating their own program that

gives them a root shell (or making their own copy of a shell) regardless of any ‘!’ elements in the user

specification.

Security implications of fast_glob

If the fast_glob option is in use, it is not possible to reliably negate commands where the path name

includes globbing (aka wildcard) characters. This is because the C library’s fnmatch(3) function cannot

resolve relative paths. While this is typically only an inconvenience for rules that grant privileges, it can

result in a security issue for rules that subtract or revoke privileges.

For example, given the following sudoers file entry:

john ALL = /usr/bin/passwd [a-zA-Z0-9]*, /usr/bin/chsh [a-zA-Z0-9]*,\

/usr/bin/chfn [a-zA-Z0-9]*, !/usr/bin/* root

User john can still run /usr/bin/passwd root if fast_glob is enabled by changing to /usr/bin and running

./passwd root instead.

Preventing shell escapes
Once sudo executes a program, that program is free to do whatever it pleases, including run other

programs. This can be a security issue since it is not uncommon for a program to allow shell escapes,

which lets a user bypass sudo’s access control and logging. Common programs that permit shell escapes

include shells (obviously), editors, paginators, mail and terminal programs.

There are two basic approaches to this problem:

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

restrict Avoid giving users access to commands that allow the user to run arbitrary commands.

Many editors have a restricted mode where shell escapes are disabled, though sudoedit is a

better solution to running editors via sudo. Due to the large number of programs that offer

shell escapes, restricting users to the set of programs that do not is often unworkable.

noexec Many systems that support shared libraries have the ability to override default library

functions by pointing an environment variable (usually LD_PRELOAD) to an alternate

shared library. On such systems, sudo’s noexec functionality can be used to prevent a

program run by sudo from executing any other programs. Note, however, that this applies

only to native dynamically-linked executables. Statically-linked executables and foreign

executables running under binary emulation are not affected.

The noexec feature is known to work on SunOS, Solaris, *BSD, Linux, IRIX, Tru64 UNIX,

MacOS X, HP-UX 11.x and AIX 5.3 and above. It should be supported on most operating

systems that support the LD_PRELOAD environment variable. Check your operating

system’s manual pages for the dynamic linker (usually ld.so, ld.so.1, dyld, dld.sl, rld, or

loader) to see if LD_PRELOAD is supported.

On Solaris 10 and higher, noexec uses Solaris privileges instead of the LD_PRELOAD

environment variable.

To enable noexec for a command, use the NOEXEC tag as documented in the User

Specification section above. Here is that example again:

aaron shanty = NOEXEC: /usr/bin/more, /usr/bin/vi

This allows user aaron to run /usr/bin/more and /usr/bin/vi with noexec enabled. This will

prevent those two commands from executing other commands (such as a shell). If you are

unsure whether or not your system is capable of supporting noexec you can always just try it

out and check whether shell escapes work when noexec is enabled.

Note that restricting shell escapes is not a panacea. Programs running as root are still capable of many

potentially hazardous operations (such as changing or overwriting files) that could lead to unintended

privilege escalation. In the specific case of an editor, a safer approach is to give the user permission to

run sudoedit (see below).

Secure editing
The sudoers plugin includes sudoedit support which allows users to securely edit files with the editor of

their choice. As sudoedit is a built-in command, it must be specified in the sudoers file without a

leading path. However, it may take command line arguments just as a normal command does.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

Wildcards used in sudoedit command line arguments are expected to be path names, so a forward slash

(‘/’) will not be matched by a wildcard.

Unlike other sudo commands, the editor is run with the permissions of the invoking user and with the

environment unmodified. More information may be found in the description of the -e option in sudo(8).

For example, to allow user operator to edit the "message of the day" file:

operator sudoedit /etc/motd

The operator user then runs sudoedit as follows:

$ sudoedit /etc/motd

The editor will run as the operator user, not root, on a temporary copy of /etc/motd. After the file has

been edited, /etc/motd will be updated with the contents of the temporary copy.

Users should never be granted sudoedit permission to edit a file that resides in a directory the user has

write access to, either directly or via a wildcard. If the user has write access to the directory it is

possible to replace the legitimate file with a link to another file, allowing the editing of arbitrary files.

To prevent this, starting with version 1.8.16, symbolic links will not be followed in writable directories

and sudoedit will refuse to edit a file located in a writable directory unless the sudoedit_checkdir option

has been disabled or the invoking user is root. Additionally, in version 1.8.15 and higher, sudoedit will

refuse to open a symbolic link unless either the sudoedit_follow option is enabled or the sudoedit

command is prefixed with the FOLLOW tag in the sudoers file.

Time stamp file checks
sudoers will check the ownership of its time stamp directory (/var/run/sudo/ts by default) and ignore the

directory’s contents if it is not owned by root or if it is writable by a user other than root. Older versions

of sudo stored time stamp files in /tmp; this is no longer recommended as it may be possible for a user to

create the time stamp themselves on systems that allow unprivileged users to change the ownership of

files they create.

While the time stamp directory should be cleared at reboot time, not all systems contain a /var/run

directory. To avoid potential problems, sudoers will ignore time stamp files that date from before the

machine booted on systems where the boot time is available.

Some systems with graphical desktop environments allow unprivileged users to change the system

clock. Since sudoers relies on the system clock for time stamp validation, it may be possible on such

systems for a user to run sudo for longer than timestamp_timeout by setting the clock back. To combat

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

this, sudoers uses a monotonic clock (which never moves backwards) for its time stamps if the system

supports it.

sudoers will not honor time stamps set far in the future. Time stamps with a date greater than

current_time + 2 * TIMEOUT will be ignored and sudoers will log and complain.

Since time stamp files live in the file system, they can outlive a user’s login session. As a result, a user

may be able to login, run a command with sudo after authenticating, logout, login again, and run sudo
without authenticating so long as the record’s time stamp is within 5 minutes (or whatever value the

timeout is set to in the sudoers file). When the tty_tickets option is enabled, the time stamp record

includes the device number of the terminal the user authenticated with. This provides per-tty granularity

but time stamp records still may outlive the user’s session. The time stamp record also includes the

session ID of the process that last authenticated. This prevents processes in different terminal sessions

from using the same time stamp record. It also helps reduce the chance that a user will be able to run

sudo without entering a password when logging out and back in again on the same terminal.

DEBUGGING
Versions 1.8.4 and higher of the sudoers plugin support a flexible debugging framework that can help

track down what the plugin is doing internally if there is a problem. This can be configured in the

sudo.conf(5) file.

The sudoers plugin uses the same debug flag format as the sudo front-end: subsystem@priority.

The priorities used by sudoers, in order of decreasing severity, are: crit, err, warn, notice, diag, info,

trace and debug. Each priority, when specified, also includes all priorities higher than it. For example, a

priority of notice would include debug messages logged at notice and higher.

The following subsystems are used by the sudoers plugin:

alias User_Alias, Runas_Alias, Host_Alias and Cmnd_Alias processing

all matches every subsystem

audit BSM and Linux audit code

auth user authentication

defaults sudoers file Defaults settings

env environment handling

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

ldap LDAP-based sudoers

logging logging support

match matching of users, groups, hosts and netgroups in the sudoers file

netif network interface handling

nss network service switch handling in sudoers

parser sudoers file parsing

perms permission setting

plugin The equivalent of main for the plugin.

pty pseudo-tty related code

rbtree redblack tree internals

sssd SSSD-based sudoers

util utility functions

For example:

Debug sudo /var/log/sudo_debug match@info,nss@info

For more information, see the sudo.conf(5) manual.

SEE ALSO
ssh(1), su(1), fnmatch(3), glob(3), mktemp(3), strftime(3), sudo.conf(5), sudoers.ldap(5), sudo(8),

sudo_plugin(8), visudo(8)

AUTHORS
Many people have worked on sudo over the years; this version consists of code written primarily by:

Todd C. Miller

See the CONTRIBUTORS file in the sudo distribution (https://www.sudo.ws/contributors.html) for an

exhaustive list of people who have contributed to sudo.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

CAVEATS
The sudoers file should always be edited by the visudo command which locks the file and does

grammatical checking. It is imperative that the sudoers file be free of syntax errors since sudo will not

run with a syntactically incorrect sudoers file.

When using netgroups of machines (as opposed to users), if you store fully qualified host name in the

netgroup (as is usually the case), you either need to have the machine’s host name be fully qualified as

returned by the hostname command or use the fqdn option in sudoers.

BUGS
If you feel you have found a bug in sudo, please submit a bug report at https://bugzilla.sudo.ws/

SUPPORT
Limited free support is available via the sudo-users mailing list, see

https://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives.

DISCLAIMER
sudo is provided "AS IS" and any express or implied warranties, including, but not limited to, the

implied warranties of merchantability and fitness for a particular purpose are disclaimed. See the

LICENSE file distributed with sudo or https://www.sudo.ws/license.html for complete details.

SUDOERS(5) File Formats Manual SUDOERS(5)

Sudo 1.8.19 November 30, 2016 Sudo 1.8.19

