
NAME
sudo_plugin - Sudo Plugin API

DESCRIPTION
Starting with version 1.8, sudo supports a plugin API for policy and session logging. Plugins may be

compiled as dynamic shared objects (the default on systems that support them) or compiled statically

into the sudo binary itself. By default, the sudoers policy plugin and an associated I/O logging plugin

are used. Via the plugin API, sudo can be configured to use alternate policy and/or I/O logging plugins

provided by third parties. The plugins to be used are specified in the sudo.conf(5) file.

The API is versioned with a major and minor number. The minor version number is incremented when

additions are made. The major number is incremented when incompatible changes are made. A plugin

should be check the version passed to it and make sure that the major version matches.

The plugin API is defined by the sudo_plugin.h header file.

Policy plugin API
A policy plugin must declare and populate a policy_plugin struct in the global scope. This structure

contains pointers to the functions that implement the sudo policy checks. The name of the symbol

should be specified in sudo.conf(5) along with a path to the plugin so that sudo can load it.

struct policy_plugin {

#define SUDO_POLICY_PLUGIN 1

unsigned int type; /* always SUDO_POLICY_PLUGIN */

unsigned int version; /* always SUDO_API_VERSION */

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t plugin_printf, char * const settings[],

char * const user_info[], char * const user_env[],

char * const plugin_options[], const char **errstr);

void (*close)(int exit_status, int error);

int (*show_version)(int verbose);

int (*check_policy)(int argc, char * const argv[],

char *env_add[], char **command_info[],

char **argv_out[], char **user_env_out[], const char **errstr);

int (*list)(int argc, char * const argv[], int verbose,

const char *list_user, const char **errstr);

int (*validate)(const char **errstr);

void (*invalidate)(int remove);

int (*init_session)(struct passwd *pwd, char **user_env[],

const char **errstr);

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

void (*register_hooks)(int version,

int (*register_hook)(struct sudo_hook *hook));

void (*deregister_hooks)(int version,

int (*deregister_hook)(struct sudo_hook *hook));

struct sudo_plugin_event * (*event_alloc)(void);

};

The policy_plugin struct has the following fields:

type The type field should always be set to SUDO_POLICY_PLUGIN.

version

The version field should be set to SUDO_API_VERSION.

This allows sudo to determine the API version the plugin was built against.

open

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t plugin_printf, char * const settings[],

char * const user_info[], char * const user_env[],

char * const plugin_options[], const char **errstr);

Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was a usage error.

In the latter case, sudo will print a usage message before it exits. If an error occurs, the plugin

may optionally call the conversation() or plugin_printf() function with

SUDO_CONF_ERROR_MSG to present additional error information to the user.

The function arguments are as follows:

version

The version passed in by sudo allows the plugin to determine the major and minor version

number of the plugin API supported by sudo.

conversation

A pointer to the conversation() function that can be used by the plugin to interact with the

user (see Conversation API for details). Returns 0 on success and -1 on failure.

plugin_printf

A pointer to a printf()-style function that may be used to display informational or error

messages (see Conversation API for details). Returns the number of characters printed on

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

success and -1 on failure.

settings

A vector of user-supplied sudo settings in the form of "name=value" strings. The vector is

terminated by a NULL pointer. These settings correspond to options the user specified

when running sudo. As such, they will only be present when the corresponding option has

been specified on the command line.

When parsing settings, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

The following values may be set by sudo:

bsdauth_type=string

Authentication type, if specified by the -a option, to use on systems where BSD

authentication is supported.

closefrom=number

If specified, the user has requested via the -C option that sudo close all files

descriptors with a value of number or higher. The plugin may optionally pass this, or

another value, back in the command_info list.

cmnd_chroot=string

The root directory (see chroot(2)) to run the command in, as specified by the user via

the -R option. The plugin may ignore or restrict the user’s ability to specify a new

root directory. Only available starting with API version 1.16.

cmnd_cwd=string

The working directory to run the command in, as specified by the user via the -D
option. The plugin may ignore or restrict the user’s ability to specify a new working

directory. Only available starting with API version 1.16.

debug_flags=string

A debug file path name followed by a space and a comma-separated list of debug

flags that correspond to the plugin’s Debug entry in sudo.conf(5), if there is one. The

flags are passed to the plugin exactly as they appear in sudo.conf(5). The syntax used

by sudo and the sudoers plugin is subsystem@priority but a plugin is free to use a

different format so long as it does not include a comma (‘,’). Prior to sudo 1.8.12,

there was no way to specify plugin-specific debug_flags so the value was always the

same as that used by the sudo front end and did not include a path name, only the

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

flags themselves. As of version 1.7 of the plugin interface, sudo will only pass

debug_flags if sudo.conf(5) contains a plugin-specific Debug entry.

ignore_ticket=bool

Set to true if the user specified the -k option along with a command, indicating that

the user wishes to ignore any cached authentication credentials. implied_shell to true.

This allows sudo with no arguments to be used similarly to su(1). If the plugin does

not to support this usage, it may return a value of -2 from the check_policy() function,

which will cause sudo to print a usage message and exit.

implied_shell=bool

If the user does not specify a program on the command line, sudo will pass the plugin

the path to the user’s shell and set

login_class=string

BSD login class to use when setting resource limits and nice value, if specified by the

-c option.

login_shell=bool

Set to true if the user specified the -i option, indicating that the user wishes to run a

login shell.

max_groups=int

The maximum number of groups a user may belong to. This will only be present if

there is a corresponding setting in sudo.conf(5).

network_addrs=list

A space-separated list of IP network addresses and netmasks in the form

"addr/netmask", e.g., "192.168.1.2/255.255.255.0". The address and netmask pairs

may be either IPv4 or IPv6, depending on what the operating system supports. If the

address contains a colon (‘:’), it is an IPv6 address, else it is IPv4.

noninteractive=bool

Set to true if the user specified the -n option, indicating that sudo should operate in

non-interactive mode. The plugin may reject a command run in non-interactive mode

if user interaction is required.

plugin_dir=string

The default plugin directory used by the sudo front end. This is the default directory

set at compile time and may not correspond to the directory the running plugin was

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

loaded from. It may be used by a plugin to locate support files.

plugin_path=string

The path name of plugin loaded by the sudo front end. The path name will be a fully-

qualified unless the plugin was statically compiled into sudo.

preserve_environment=bool

Set to true if the user specified the -E option, indicating that the user wishes to

preserve the environment.

preserve_groups=bool

Set to true if the user specified the -P option, indicating that the user wishes to

preserve the group vector instead of setting it based on the runas user.

progname=string

The command name that sudo was run as, typically "sudo" or "sudoedit".

prompt=string

The prompt to use when requesting a password, if specified via the -p option.

remote_host=string

The name of the remote host to run the command on, if specified via the -h option.

Support for running the command on a remote host is meant to be implemented via a

helper program that is executed in place of the user-specified command. The sudo
front end is only capable of executing commands on the local host. Only available

starting with API version 1.4.

run_shell=bool

Set to true if the user specified the -s option, indicating that the user wishes to run a

shell.

runas_group=string

The group name or gid to run the command as, if specified via the -g option.

runas_user=string

The user name or uid to run the command as, if specified via the -u option.

selinux_role=string

SELinux role to use when executing the command, if specified by the -r option.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

selinux_type=string

SELinux type to use when executing the command, if specified by the -t option.

set_home=bool

Set to true if the user specified the -H option. If true, set the HOME environment

variable to the target user’s home directory.

sudoedit=bool

Set to true when the -e option is specified or if invoked as sudoedit. The plugin shall

substitute an editor into argv in the check_policy() function or return -2 with a usage

error if the plugin does not support sudoedit. For more information, see the

check_policy section.

timeout=string

Command timeout specified by the user via the -T option. Not all plugins support

command timeouts and the ability of the user to set a timeout may be restricted by

policy. The format of the timeout string is plugin-specific.

Additional settings may be added in the future so the plugin should silently ignore settings

that it does not recognize.

user_info

A vector of information about the user running the command in the form of "name=value"

strings. The vector is terminated by a NULL pointer.

When parsing user_info, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

The following values may be set by sudo:

cols=int

The number of columns the user’s terminal supports. If there is no terminal device

available, a default value of 80 is used.

cwd=string

The user’s current working directory.

egid=gid_t

The effective group-ID of the user invoking sudo.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

euid=uid_t

The effective user-ID of the user invoking sudo.

gid=gid_t

The real group-ID of the user invoking sudo.

groups=list

The user’s supplementary group list formatted as a string of comma-separated group-

IDs.

host=string

The local machine’s hostname as returned by the gethostname(2) system call.

lines=int

The number of lines the user’s terminal supports. If there is no terminal device

available, a default value of 24 is used.

pgid=int

The ID of the process group that the running sudo process is a member of. Only

available starting with API version 1.2.

pid=int

The process ID of the running sudo process. Only available starting with API version

1.2.

ppid=int

The parent process ID of the running sudo process. Only available starting with API

version 1.2.

rlimit_as=soft,hard

The maximum size to which the process’s address space may grow (in bytes), if

supported by the operating system. The soft and hard limits are separated by a

comma. A value of "infinity" indicates that there is no limit. Only available starting

with API version 1.16.

rlimit_core=soft,hard

The largest size core dump file that may be created (in bytes). The soft and hard

limits are separated by a comma. A value of "infinity" indicates that there is no limit.

Only available starting with API version 1.16.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

rlimit_cpu=soft,hard

The maximum amount of CPU time that the process may use (in seconds). The soft

and hard limits are separated by a comma. A value of "infinity" indicates that there is

no limit. Only available starting with API version 1.16.

rlimit_data=soft,hard

The maximum size of the data segment for the process (in bytes). The soft and hard

limits are separated by a comma. A value of "infinity" indicates that there is no limit.

Only available starting with API version 1.16.

rlimit_fsize=soft,hard

The largest size file that the process may create (in bytes). The soft and hard limits

are separated by a comma. A value of "infinity" indicates that there is no limit. Only

available starting with API version 1.16.

rlimit_locks=soft,hard

The maximum number of locks that the process may establish, if supported by the

operating system. The soft and hard limits are separated by a comma. A value of

"infinity" indicates that there is no limit. Only available starting with API version

1.16.

rlimit_memlock=soft,hard

The maximum size that the process may lock in memory (in bytes), if supported by

the operating system. The soft and hard limits are separated by a comma. A value of

"infinity" indicates that there is no limit. Only available starting with API version

1.16.

rlimit_nofile=soft,hard

The maximum number of files that the process may have open. The soft and hard

limits are separated by a comma. A value of "infinity" indicates that there is no limit.

Only available starting with API version 1.16.

rlimit_nproc=soft,hard

The maximum number of processes that the user may run simultaneously. The soft

and hard limits are separated by a comma. A value of "infinity" indicates that there is

no limit. Only available starting with API version 1.16.

rlimit_rss=soft,hard

The maximum size to which the process’s resident set size may grow (in bytes). The

soft and hard limits are separated by a comma. A value of "infinity" indicates that

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

there is no limit. Only available starting with API version 1.16.

rlimit_stack=soft,hard

The maximum size to which the process’s stack may grow (in bytes). The soft and

hard limits are separated by a comma. A value of "infinity" indicates that there is no

limit. Only available starting with API version 1.16.

sid=int

The session ID of the running sudo process or 0 if sudo is not part of a POSIX job

control session. Only available starting with API version 1.2.

tcpgid=int

The ID of the foreground process group associated with the terminal device

associated with the sudo process or 0 if there is no terminal present. Only available

starting with API version 1.2.

tty=string

The path to the user’s terminal device. If the user has no terminal device associated

with the session, the value will be empty, as in "tty=".

uid=uid_t

The real user-ID of the user invoking sudo.

umask=octal

The invoking user’s file creation mask. Only available starting with API version

1.10.

user=string

The name of the user invoking sudo.

user_env

The user’s environment in the form of a NULL-terminated vector of "name=value" strings.

When parsing user_env, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

plugin_options

Any (non-comment) strings immediately after the plugin path are passed as arguments to

the plugin. These arguments are split on a white space boundary and are passed to the

plugin in the form of a NULL-terminated array of strings. If no arguments were specified,

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

plugin_options will be the NULL pointer.

NOTE: the plugin_options parameter is only available starting with API version 1.2. A

plugin must check the API version specified by the sudo front end before using

plugin_options. Failure to do so may result in a crash.

errstr

If the open() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

close

void (*close)(int exit_status, int error);

The close() function is called when sudo is finished, shortly before it exits. Starting with API

version 1.15, close() is called regardless of whether or not a command was actually executed.

This makes it possible for plugins to perform cleanup even when a command was not run. It is

not possible to tell whether a command was run based solely on the arguments passed to the

close() function. To determine if a command was actually run, the plugin must keep track of

whether or not the check_policy() function returned successfully.

The function arguments are as follows:

exit_status

The command’s exit status, as returned by the wait(2) system call, or zero if no command

was run. The value of exit_status is undefined if error is non-zero.

error If the command could not be executed, this is set to the value of errno set by the execve(2)

system call. The plugin is responsible for displaying error information via the

conversation() or plugin_printf() function. If the command was successfully executed, the

value of error is zero.

If no close() function is defined, no I/O logging plugins are loaded, and neither the timeout not

use_pty options are set in the command_info list, the sudo front end may execute the command

directly instead of running it as a child process.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

show_version

int (*show_version)(int verbose);

The show_version() function is called by sudo when the user specifies the -V option. The plugin

may display its version information to the user via the conversation() or plugin_printf() function

using SUDO_CONV_INFO_MSG. If the user requests detailed version information, the verbose

flag will be set.

Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was a usage error,

although the return value is currently ignored.

check_policy

int (*check_policy)(int argc, char * const argv[], char *env_add[],

char **command_info[], char **argv_out[], char **user_env_out[],

const char **errstr);

The check_policy() function is called by sudo to determine whether the user is allowed to run the

specified commands.

If the sudoedit option was enabled in the settings array passed to the open() function, the user has

requested sudoedit mode. sudoedit is a mechanism for editing one or more files where an editor is

run with the user’s credentials instead of with elevated privileges. sudo achieves this by creating

user-writable temporary copies of the files to be edited and then overwriting the originals with the

temporary copies after editing is complete. If the plugin supports sudoedit, it should choose the

editor to be used, potentially from a variable in the user’s environment, such as EDITOR, and

include it in argv_out (note that environment variables may include command line options). The

files to be edited should be copied from argv into argv_out, separated from the editor and its

arguments by a "--" element. The "--" will be removed by sudo before the editor is executed. The

plugin should also set sudoedit=true in the command_info list.

The check_policy() function returns 1 if the command is allowed, 0 if not allowed, -1 for a general

error, or -2 for a usage error or if sudoedit was specified but is unsupported by the plugin. In the

latter case, sudo will print a usage message before it exits. If an error occurs, the plugin may

optionally call the conversation() or plugin_printf() function with SUDO_CONF_ERROR_MSG

to present additional error information to the user.

The function arguments are as follows:

argc The number of elements in argv, not counting the final NULL pointer.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

argv The argument vector describing the command the user wishes to run, in the same form as

what would be passed to the execve(2) system call. The vector is terminated by a NULL

pointer.

env_add

Additional environment variables specified by the user on the command line in the form of

a NULL-terminated vector of "name=value" strings. The plugin may reject the command if

one or more variables are not allowed to be set, or it may silently ignore such variables.

When parsing env_add, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

command_info

Information about the command being run in the form of "name=value" strings. These

values are used by sudo to set the execution environment when running a command. The

plugin is responsible for creating and populating the vector, which must be terminated with

a NULL pointer. The following values are recognized by sudo:

chroot=string

The root directory to use when running the command.

closefrom=number

If specified, sudo will close all files descriptors with a value of number or higher.

command=string

Fully qualified path to the command to be executed.

cwd=string

The current working directory to change to when executing the command. If sudo is

unable to change to the new working directory, the command will not be run unless

cwd_optional is also set (see below).

cwd_optional=bool

If enabled, sudo will treat an inability to change to the new working directory as a

non-fatal error. This setting has no effect unless cwd is also set.

exec_background=bool

By default, sudo runs a command as the foreground process as long as sudo itself is

running in the foreground. When exec_background is enabled and the command is

being run in a pseudo-terminal (due to I/O logging or the use_pty setting), the

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

command will be run as a background process. Attempts to read from the controlling

terminal (or to change terminal settings) will result in the command being suspended

with the SIGTTIN signal (or SIGTTOU in the case of terminal settings). If this

happens when sudo is a foreground process, the command will be granted the

controlling terminal and resumed in the foreground with no user intervention

required. The advantage of initially running the command in the background is that

sudo need not read from the terminal unless the command explicitly requests it.

Otherwise, any terminal input must be passed to the command, whether it has

required it or not (the kernel buffers terminals so it is not possible to tell whether the

command really wants the input). This is different from historic sudo behavior or

when the command is not being run in a pseudo-terminal.

For this to work seamlessly, the operating system must support the automatic

restarting of system calls. Unfortunately, not all operating systems do this by default,

and even those that do may have bugs. For example, macOS fails to restart the

tcgetattr() and tcsetattr() system calls (this is a bug in macOS). Furthermore, because

this behavior depends on the command stopping with the SIGTTIN or SIGTTOU

signals, programs that catch these signals and suspend themselves with a different

signal (usually SIGTOP) will not be automatically foregrounded. Some versions of

the linux su(1) command behave this way. Because of this, a plugin should not set

exec_background unless it is explicitly enabled by the administrator and there should

be a way to enabled or disable it on a per-command basis.

This setting has no effect unless I/O logging is enabled or use_pty is enabled.

execfd=number

If specified, sudo will use the fexecve(2) system call to execute the command instead

of execve(2). The specified number must refer to an open file descriptor.

iolog_compress=bool

Set to true if the I/O logging plugins, if any, should compress the log data. This is a

hint to the I/O logging plugin which may choose to ignore it.

iolog_group=string

The group that will own newly created I/O log files and directories. This is a hint to

the I/O logging plugin which may choose to ignore it.

iolog_mode=octal

The file permission mode to use when creating I/O log files and directories. This is a

hint to the I/O logging plugin which may choose to ignore it.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

iolog_user=string

The user that will own newly created I/O log files and directories. This is a hint to the

I/O logging plugin which may choose to ignore it.

iolog_path=string

Fully qualified path to the file or directory in which I/O log is to be stored. This is a

hint to the I/O logging plugin which may choose to ignore it. If no I/O logging plugin

is loaded, this setting has no effect.

iolog_stdin=bool

Set to true if the I/O logging plugins, if any, should log the standard input if it is not

connected to a terminal device. This is a hint to the I/O logging plugin which may

choose to ignore it.

iolog_stdout=bool

Set to true if the I/O logging plugins, if any, should log the standard output if it is not

connected to a terminal device. This is a hint to the I/O logging plugin which may

choose to ignore it.

iolog_stderr=bool

Set to true if the I/O logging plugins, if any, should log the standard error if it is not

connected to a terminal device. This is a hint to the I/O logging plugin which may

choose to ignore it.

iolog_ttyin=bool

Set to true if the I/O logging plugins, if any, should log all terminal input. This only

includes input typed by the user and not from a pipe or redirected from a file. This is

a hint to the I/O logging plugin which may choose to ignore it.

iolog_ttyout=bool

Set to true if the I/O logging plugins, if any, should log all terminal output. This only

includes output to the screen, not output to a pipe or file. This is a hint to the I/O

logging plugin which may choose to ignore it.

login_class=string

BSD login class to use when setting resource limits and nice value (optional). This

option is only set on systems that support login classes.

nice=int

Nice value (priority) to use when executing the command. The nice value, if

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

specified, overrides the priority associated with the login_class on BSD systems.

noexec=bool

If set, prevent the command from executing other programs.

preserve_fds=list

A comma-separated list of file descriptors that should be preserved, regardless of the

value of the closefrom setting. Only available starting with API version 1.5.

preserve_groups=bool

If set, sudo will preserve the user’s group vector instead of initializing the group

vector based on runas_user.

runas_egid=gid

Effective group-ID to run the command as. If not specified, the value of runas_gid is

used.

runas_euid=uid

Effective user-ID to run the command as. If not specified, the value of runas_uid is

used.

runas_gid=gid

Group-ID to run the command as.

runas_group=string

The name of the group the command will run as, if it is different from the

runas_user’s default group. This value is provided for auditing purposes only, the

sudo front-end uses runas_egid and runas_gid when executing the command.

runas_groups=list

The supplementary group vector to use for the command in the form of a comma-

separated list of group-IDs. If preserve_groups is set, this option is ignored.

runas_uid=uid

User-ID to run the command as.

runas_user=string

The name of the user the command will run as, which should correspond to

runas_euid (or runas_uid if runas_euid is not set). This value is provided for auditing

purposes only, the sudo front-end uses runas_euid and runas_uid when executing the

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

command.

selinux_role=string

SELinux role to use when executing the command.

selinux_type=string

SELinux type to use when executing the command.

set_utmp=bool

Create a utmp (or utmpx) entry when a pseudo-terminal is allocated. By default, the

new entry will be a copy of the user’s existing utmp entry (if any), with the tty, time,

type and pid fields updated.

sudoedit=bool

Set to true when in sudoedit mode. The plugin may enable sudoedit mode even if

sudo was not invoked as sudoedit. This allows the plugin to perform command

substitution and transparently enable sudoedit when the user attempts to run an editor.

sudoedit_checkdir=bool

Set to false to disable directory writability checks in sudoedit. By default, sudoedit
1.8.16 and higher will check all directory components of the path to be edited for

writability by the invoking user. Symbolic links will not be followed in writable

directories and sudoedit will refuse to edit a file located in a writable directory. These

restrictions are not enforced when sudoedit is run by root. The sudoedit_follow

option can be set to false to disable this check. Only available starting with API

version 1.8.

sudoedit_follow=bool

Set to true to allow sudoedit to edit files that are symbolic links. By default, sudoedit
1.8.15 and higher will refuse to open a symbolic link. The sudoedit_follow option

can be used to restore the older behavior and allow sudoedit to open symbolic links.

Only available starting with API version 1.8.

timeout=int

Command timeout. If non-zero then when the timeout expires the command will be

killed.

umask=octal

The file creation mask to use when executing the command. This value may be

overridden by PAM or login.conf on some systems unless the umask_override option

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

is also set.

umask_override=bool

Force the value specified by the umask option to override any umask set by PAM or

login.conf.

use_pty=bool

Allocate a pseudo-terminal to run the command in, regardless of whether or not I/O

logging is in use. By default, sudo will only run the command in a pseudo-terminal

when an I/O log plugin is loaded.

utmp_user=string

User name to use when constructing a new utmp (or utmpx) entry when set_utmp is

enabled. This option can be used to set the user field in the utmp entry to the user the

command runs as rather than the invoking user. If not set, sudo will base the new

entry on the invoking user’s existing entry.

Unsupported values will be ignored.

argv_out

The NULL-terminated argument vector to pass to the execve(2) system call when executing

the command. The plugin is responsible for allocating and populating the vector.

user_env_out

The NULL-terminated environment vector to use when executing the command. The

plugin is responsible for allocating and populating the vector.

errstr

If the check_policy() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

list

int (*list)(int argc, char * const argv[], int verbose,

const char *list_user, const char **errstr);

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

List available privileges for the invoking user. Returns 1 on success, 0 on failure and -1 on error.

On error, the plugin may optionally call the conversation() or plugin_printf() function with

SUDO_CONF_ERROR_MSG to present additional error information to the user.

Privileges should be output via the conversation() or plugin_printf() function using

SUDO_CONV_INFO_MSG.

The function arguments are as follows:

argc The number of elements in argv, not counting the final NULL pointer.

argv If non-NULL, an argument vector describing a command the user wishes to check against

the policy in the same form as what would be passed to the execve(2) system call. If the

command is permitted by the policy, the fully-qualified path to the command should be

displayed along with any command line arguments.

verbose

Flag indicating whether to list in verbose mode or not.

list_user

The name of a different user to list privileges for if the policy allows it. If NULL, the

plugin should list the privileges of the invoking user.

errstr

If the list() function returns a value other than 1, the plugin may store a message describing

the failure or error in errstr. The sudo front end will then pass this value to any registered

audit plugins. The string stored in errstr must remain valid until the plugin’s close()

function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

validate

int (*validate)(const char **errstr);

The validate() function is called when sudo is run with the -v option. For policy plugins such as

sudoers that cache authentication credentials, this function will validate and cache the credentials.

The validate() function should be NULL if the plugin does not support credential caching.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

Returns 1 on success, 0 on failure and -1 on error. On error, the plugin may optionally call the

conversation() or plugin_printf() function with SUDO_CONF_ERROR_MSG to present

additional error information to the user.

The function arguments are as follows:

errstr

If the validate() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

invalidate

void (*invalidate)(int remove);

The invalidate() function is called when sudo is run with the -k or -K option. For policy plugins

such as sudoers that cache authentication credentials, this function will invalidate the credentials.

If the remove flag is set, the plugin may remove the credentials instead of simply invalidating

them.

The invalidate() function should be NULL if the plugin does not support credential caching.

init_session

int (*init_session)(struct passwd *pwd, char **user_env_out[]);

The init_session() function is called before sudo sets up the execution environment for the

command. It is run in the parent sudo process and before any uid or gid changes. This can be

used to perform session setup that is not supported by command_info, such as opening the PAM

session. The close() function can be used to tear down the session that was opened by

init_session.

The pwd argument points to a passwd struct for the user the command will be run as if the uid the

command will run as was found in the password database, otherwise it will be NULL.

The user_env_out argument points to the environment the command will run in, in the form of a

NULL-terminated vector of "name=value" strings. This is the same string passed back to the front

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

end via the Policy Plugin’s user_env_out parameter. If the init_session() function needs to modify

the user environment, it should update the pointer stored in user_env_out. The expected use case

is to merge the contents of the PAM environment (if any) with the contents of user_env_out.

NOTE: the user_env_out parameter is only available starting with API version 1.2. A plugin must
check the API version specified by the sudo front end before using user_env_out. Failure to do so

may result in a crash.

Returns 1 on success, 0 on failure and -1 on error. On error, the plugin may optionally call the

conversation() or plugin_printf() function with SUDO_CONF_ERROR_MSG to present

additional error information to the user.

register_hooks

void (*register_hooks)(int version,

int (*register_hook)(struct sudo_hook *hook));

The register_hooks() function is called by the sudo front end to register any hooks the plugin

needs. If the plugin does not support hooks, register_hooks should be set to the NULL pointer.

The version argument describes the version of the hooks API supported by the sudo front end.

The register_hook() function should be used to register any supported hooks the plugin needs. It

returns 0 on success, 1 if the hook type is not supported and -1 if the major version in struct hook

does not match the front end’s major hook API version.

See the Hook function API section below for more information about hooks.

NOTE: the register_hooks() function is only available starting with API version 1.2. If the sudo
front end doesn’t support API version 1.2 or higher, register_hooks will not be called.

deregister_hooks

void (*deregister_hooks)(int version,

int (*deregister_hook)(struct sudo_hook *hook));

The deregister_hooks() function is called by the sudo front end to deregister any hooks the plugin

has registered. If the plugin does not support hooks, deregister_hooks should be set to the NULL

pointer.

The version argument describes the version of the hooks API supported by the sudo front end.

The deregister_hook() function should be used to deregister any hooks that were put in place by

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

the register_hook() function. If the plugin tries to deregister a hook that the front end does not

support, deregister_hook will return an error.

See the Hook function API section below for more information about hooks.

NOTE: the deregister_hooks() function is only available starting with API version 1.2. If the sudo
front end doesn’t support API version 1.2 or higher, deregister_hooks will not be called.

event_alloc

struct sudo_plugin_event * (*event_alloc)(void);

The event_alloc() function is used to allocate a struct sudo_plugin_event which provides access to

the main sudo event loop. Unlike the other fields, the event_alloc() pointer is filled in by the sudo
front end, not by the plugin.

See the Event API section below for more information about events.

NOTE: the event_alloc() function is only available starting with API version 1.15. If the sudo
front end doesn’t support API version 1.15 or higher, event_alloc() will not be set.

errstr

If the init_session() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s close()

function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must check

the API version specified by the sudo front end before using errstr. Failure to do so may result in

a crash.

Policy Plugin Version Macros

/* Plugin API version major/minor. */

#define SUDO_API_VERSION_MAJOR 1

#define SUDO_API_VERSION_MINOR 13

#define SUDO_API_MKVERSION(x, y) ((x << 16) | y)

#define SUDO_API_VERSION SUDO_API_MKVERSION(SUDO_API_VERSION_MAJOR,\

SUDO_API_VERSION_MINOR)

/* Getters and setters for API version */

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

#define SUDO_API_VERSION_GET_MAJOR(v) ((v) >> 16)

#define SUDO_API_VERSION_GET_MINOR(v) ((v) & 0xffff)

#define SUDO_API_VERSION_SET_MAJOR(vp, n) do { \

(vp) = ((vp) & 0x0000ffff) | ((n) << 16); \

} while(0)

#define SUDO_API_VERSION_SET_MINOR(vp, n) do { \

(vp) = ((vp) & 0xffff0000) | (n); \

} while(0)

I/O plugin API
struct io_plugin {

#define SUDO_IO_PLUGIN 2

unsigned int type; /* always SUDO_IO_PLUGIN */

unsigned int version; /* always SUDO_API_VERSION */

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t plugin_printf, char * const settings[],

char * const user_info[], char * const command_info[],

int argc, char * const argv[], char * const user_env[],

char * const plugin_options[], const char **errstr);

void (*close)(int exit_status, int error); /* wait status or error */

int (*show_version)(int verbose);

int (*log_ttyin)(const char *buf, unsigned int len,

const char **errstr);

int (*log_ttyout)(const char *buf, unsigned int len,

const char **errstr);

int (*log_stdin)(const char *buf, unsigned int len,

const char **errstr);

int (*log_stdout)(const char *buf, unsigned int len,

const char **errstr);

int (*log_stderr)(const char *buf, unsigned int len,

const char **errstr);

void (*register_hooks)(int version,

int (*register_hook)(struct sudo_hook *hook));

void (*deregister_hooks)(int version,

int (*deregister_hook)(struct sudo_hook *hook));

int (*change_winsize)(unsigned int lines, unsigned int cols,

const char **errstr);

int (*log_suspend)(int signo, const char **errstr);

struct sudo_plugin_event * (*event_alloc)(void);

};

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

When an I/O plugin is loaded, sudo runs the command in a pseudo-terminal. This makes it possible to

log the input and output from the user’s session. If any of the standard input, standard output or standard

error do not correspond to a tty, sudo will open a pipe to capture the I/O for logging before passing it on.

The log_ttyin function receives the raw user input from the terminal device (note that this will include

input even when echo is disabled, such as when a password is read). The log_ttyout function receives

output from the pseudo-terminal that is suitable for replaying the user’s session at a later time. The

log_stdin(), log_stdout() and log_stderr() functions are only called if the standard input, standard output

or standard error respectively correspond to something other than a tty.

Any of the logging functions may be set to the NULL pointer if no logging is to be performed. If the

open function returns 0, no I/O will be sent to the plugin.

If a logging function returns an error (-1), the running command will be terminated and all of the

plugin’s logging functions will be disabled. Other I/O logging plugins will still receive any remaining

input or output that has not yet been processed.

If an input logging function rejects the data by returning 0, the command will be terminated and the data

will not be passed to the command, though it will still be sent to any other I/O logging plugins. If an

output logging function rejects the data by returning 0, the command will be terminated and the data will

not be written to the terminal, though it will still be sent to any other I/O logging plugins.

The audit_plugin struct has the following fields:

type The type field should always be set to SUDO_IO_PLUGIN.

version

The version field should be set to SUDO_API_VERSION.

This allows sudo to determine the API version the plugin was built against.

open

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t plugin_printf, char * const settings[],

char * const user_info[], char * const command_info[],

int argc, char * const argv[], char * const user_env[],

char * const plugin_options[]);

The open() function is run before the log_ttyin(), log_ttyout(), log_stdin(), log_stdout(),
log_stderr(), log_suspend(), change_winsize(), or show_version() functions are called. It is only

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

called if the version is being requested or if the policy plugin’s check_policy() function has

returned successfully. It returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if

there was a usage error. In the latter case, sudo will print a usage message before it exits. If an

error occurs, the plugin may optionally call the conversation() or plugin_printf() function with

SUDO_CONF_ERROR_MSG to present additional error information to the user.

The function arguments are as follows:

version

The version passed in by sudo allows the plugin to determine the major and minor version

number of the plugin API supported by sudo.

conversation

A pointer to the conversation() function that may be used by the show_version() function to

display version information (see show_version() below). The conversation() function may

also be used to display additional error message to the user. The conversation() function

returns 0 on success and -1 on failure.

plugin_printf

A pointer to a printf()-style function that may be used by the show_version() function to

display version information (see show_version below). The plugin_printf() function may

also be used to display additional error message to the user. The plugin_printf() function

returns number of characters printed on success and -1 on failure.

settings

A vector of user-supplied sudo settings in the form of "name=value" strings. The vector is

terminated by a NULL pointer. These settings correspond to options the user specified

when running sudo. As such, they will only be present when the corresponding option has

been specified on the command line.

When parsing settings, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible settings.

user_info

A vector of information about the user running the command in the form of "name=value"

strings. The vector is terminated by a NULL pointer.

When parsing user_info, the plugin should split on the first equal sign (‘=’) since the name

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible strings.

command_info

A vector of information describing the command being run in the form of "name=value"

strings. The vector is terminated by a NULL pointer.

When parsing command_info, the plugin should split on the first equal sign (‘=’) since the

name field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible strings.

argc The number of elements in argv, not counting the final NULL pointer. It can be zero, when

sudo is called with -V.

argv If non-NULL, an argument vector describing a command the user wishes to run in the same

form as what would be passed to the execve(2) system call.

user_env

The user’s environment in the form of a NULL-terminated vector of "name=value" strings.

When parsing user_env, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

plugin_options

Any (non-comment) strings immediately after the plugin path are treated as arguments to

the plugin. These arguments are split on a white space boundary and are passed to the

plugin in the form of a NULL-terminated array of strings. If no arguments were specified,

plugin_options will be the NULL pointer.

NOTE: the plugin_options parameter is only available starting with API version 1.2. A

plugin must check the API version specified by the sudo front end before using

plugin_options. Failure to do so may result in a crash.

errstr

If the open() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

close

void (*close)(int exit_status, int error);

The close() function is called when sudo is finished, shortly before it exits.

The function arguments are as follows:

exit_status

The command’s exit status, as returned by the wait(2) system call, or zero if no command

was run. The value of exit_status is undefined if error is non-zero.

error If the command could not be executed, this is set to the value of errno set by the execve(2)

system call. If the command was successfully executed, the value of error is zero.

show_version

int (*show_version)(int verbose);

The show_version() function is called by sudo when the user specifies the -V option. The plugin

may display its version information to the user via the conversation() or plugin_printf() function

using SUDO_CONV_INFO_MSG.

Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was a usage error,

although the return value is currently ignored.

log_ttyin

int (*log_ttyin)(const char *buf, unsigned int len,

const char **errstr);

The log_ttyin() function is called whenever data can be read from the user but before it is passed

to the running command. This allows the plugin to reject data if it chooses to (for instance if the

input contains banned content). Returns 1 if the data should be passed to the command, 0 if the

data is rejected (which will terminate the running command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing user input.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

len The length of buf in bytes.

errstr

If the log_ttyin() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

log_ttyout

int (*log_ttyout)(const char *buf, unsigned int len,

const char **errstr);

The log_ttyout() function is called whenever data can be read from the command but before it is

written to the user’s terminal. This allows the plugin to reject data if it chooses to (for instance if

the output contains banned content). Returns 1 if the data should be passed to the user, 0 if the

data is rejected (which will terminate the running command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing command output.

len The length of buf in bytes.

errstr

If the log_ttyout() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

log_stdin

int (*log_stdin)(const char *buf, unsigned int len,

const char **errstr);

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

The log_stdin() function is only used if the standard input does not correspond to a tty device. It

is called whenever data can be read from the standard input but before it is passed to the running

command. This allows the plugin to reject data if it chooses to (for instance if the input contains

banned content). Returns 1 if the data should be passed to the command, 0 if the data is rejected

(which will terminate the running command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing user input.

len The length of buf in bytes.

errstr

If the log_stdin() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

log_stdout

int (*log_stdout)(const char *buf, unsigned int len,

const char **errstr);

The log_stdout() function is only used if the standard output does not correspond to a tty device.

It is called whenever data can be read from the command but before it is written to the standard

output. This allows the plugin to reject data if it chooses to (for instance if the output contains

banned content). Returns 1 if the data should be passed to the user, 0 if the data is rejected (which

will terminate the running command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing command output.

len The length of buf in bytes.

errstr

If the log_stdout() function returns a value other than 1, the plugin may store a message

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

log_stderr

int (*log_stderr)(const char *buf, unsigned int len,

const char **errstr);

The log_stderr() function is only used if the standard error does not correspond to a tty device. It

is called whenever data can be read from the command but before it is written to the standard

error. This allows the plugin to reject data if it chooses to (for instance if the output contains

banned content). Returns 1 if the data should be passed to the user, 0 if the data is rejected (which

will terminate the running command) or -1 if an error occurred.

The function arguments are as follows:

buf The buffer containing command output.

len The length of buf in bytes.

errstr

If the log_stderr() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

register_hooks

See the Policy plugin API section for a description of register_hooks.

deregister_hooks

See the Policy plugin API section for a description of deregister_hooks.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

change_winsize

int (*change_winsize)(unsigned int lines, unsigned int cols,

const char **errstr);

The change_winsize() function is called whenever the window size of the terminal changes from

the initial values specified in the user_info list. Returns -1 if an error occurred, in which case no

further calls to change_winsize() will be made,

The function arguments are as follows:

lines The number of lines (rows) in the re-sized terminal.

cols The number of columns in the re-sized terminal.

errstr

If the change_winsize() function returns a value other than 1, the plugin may store a

message describing the failure or error in errstr. The sudo front end will then pass this value

to any registered audit plugins. The string stored in errstr must remain valid until the

plugin’s close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

log_suspend

int (*log_suspend)(int signo, const char **errstr);

The log_suspend() function is called whenever a command is suspended or resumed. Logging this

information makes it possible to skip the period of time when the command was suspended during

playback of a session. Returns -1 if an error occurred, in which case no further calls to

log_suspend() will be made,

The function arguments are as follows:

signo

The signal that caused the command to be suspended, or SIGCONT if the command was

resumed.

errstr

If the log_suspend() function returns a value other than 1, the plugin may store a message

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

NOTE: the errstr parameter is only available starting with API version 1.15. A plugin must
check the API version specified by the sudo front end before using errstr. Failure to do so

may result in a crash.

event_alloc

struct sudo_plugin_event * (*event_alloc)(void);

The event_alloc() function is used to allocate a struct sudo_plugin_event which provides

access to the main sudo event loop. Unlike the other fields, the event_alloc() pointer is

filled in by the sudo front end, not by the plugin.

See the Event API section below for more information about events.

NOTE: the event_alloc() function is only available starting with API version 1.15. If the

sudo front end doesn’t support API version 1.15 or higher, event_alloc() will not be set.

I/O Plugin Version Macros

Same as for the Policy plugin API.

Audit plugin API
/* Audit plugin close function status types. */

#define SUDO_PLUGIN_NO_STATUS 0

#define SUDO_PLUGIN_WAIT_STATUS 1

#define SUDO_PLUGIN_EXEC_ERROR 2

#define SUDO_PLUGIN_SUDO_ERROR 3

#define SUDO_AUDIT_PLUGIN 3

struct audit_plugin {

unsigned int type; /* always SUDO_AUDIT_PLUGIN */

unsigned int version; /* always SUDO_API_VERSION */

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t sudo_printf, char * const settings[],

char * const user_info[], int submit_optind,

char * const submit_argv[], char * const submit_envp[],

char * const plugin_options[], const char **errstr);

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

void (*close)(int status_type, int status);

int (*accept)(const char *plugin_name,

unsigned int plugin_type, char * const command_info[],

char * const run_argv[], char * const run_envp[],

const char **errstr);

int (*reject)(const char *plugin_name, unsigned int plugin_type,

const char *audit_msg, char * const command_info[],

const char **errstr);

int (*error)(const char *plugin_name, unsigned int plugin_type,

const char *audit_msg, char * const command_info[],

const char **errstr);

int (*show_version)(int verbose);

void (*register_hooks)(int version,

int (*register_hook)(struct sudo_hook *hook));

void (*deregister_hooks)(int version,

int (*deregister_hook)(struct sudo_hook *hook));

}

An audit plugin can be used to log successful and unsuccessful attempts to run sudo independent of the

policy or any I/O plugins. Multiple audit plugins may be specified in sudo.conf(5).

The audit_plugin struct has the following fields:

type The type field should always be set to SUDO_AUDIT_PLUGIN.

version

The version field should be set to SUDO_API_VERSION.

This allows sudo to determine the API version the plugin was built against.

open

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t sudo_printf, char * const settings[],

char * const user_info[], int submit_optind,

char * const submit_argv[], char * const submit_envp[],

char * const plugin_options[], const char **errstr);

The audit open() function is run before any other sudo plugin API functions. This makes it

possible to audit failures in the other plugins. It returns 1 on success, 0 on failure, -1 if a general

error occurred, or -2 if there was a usage error. In the latter case, sudo will print a usage message

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

before it exits. If an error occurs, the plugin may optionally call the conversation() or

plugin_printf() function with SUDO_CONF_ERROR_MSG to present additional error

information to the user.

The function arguments are as follows:

version

The version passed in by sudo allows the plugin to determine the major and minor version

number of the plugin API supported by sudo.

conversation

A pointer to the conversation() function that may be used by the show_version() function to

display version information (see show_version() below). The conversation() function may

also be used to display additional error message to the user. The conversation() function

returns 0 on success and -1 on failure.

plugin_printf

A pointer to a printf()-style function that may be used by the show_version() function to

display version information (see show_version below). The plugin_printf() function may

also be used to display additional error message to the user. The plugin_printf() function

returns number of characters printed on success and -1 on failure.

settings

A vector of user-supplied sudo settings in the form of "name=value" strings. The vector is

terminated by a NULL pointer. These settings correspond to options the user specified

when running sudo. As such, they will only be present when the corresponding option has

been specified on the command line.

When parsing settings, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible settings.

user_info

A vector of information about the user running the command in the form of "name=value"

strings. The vector is terminated by a NULL pointer.

When parsing user_info, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

See the Policy plugin API section for a list of all possible strings.

submit_optind

The index into submit_argv that corresponds to the first entry that is not a command line

option. If submit_argv only consists of options, which may be the case with the -l or -v
options, submit_argv[submit_optind] will evaluate to the NULL pointer.

submit_argv

The argument vector sudo was invoked with, including all command line options. The

submit_optind argument can be used to determine the end of the command line options.

submit_envp

The invoking user’s environment in the form of a NULL-terminated vector of

"name=value" strings.

When parsing submit_envp, the plugin should split on the first equal sign (‘=’) since the

name field will never include one itself but the value might.

plugin_options

Any (non-comment) strings immediately after the plugin path are treated as arguments to

the plugin. These arguments are split on a white space boundary and are passed to the

plugin in the form of a NULL-terminated array of strings. If no arguments were specified,

plugin_options will be the NULL pointer.

errstr

If the open() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

close

void (*close)(int status_type, int status);

The close() function is called when sudo is finished, shortly before it exits.

The function arguments are as follows:

status_type

The type of status being passed. One of SUDO_PLUGIN_NO_STATUS,

SUDO_PLUGIN_WAIT_STATUS, SUDO_PLUGIN_EXEC_ERROR or

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

SUDO_PLUGIN_SUDO_ERROR.

status

Depending on the value of status_type, this value is either ignored, the command’s exit

status as returned by the wait(2) system call, the value of errno set by the execve(2) system

call, or the value of errno resulting from an error in the sudo front end.

accept

int (*accept)(const char *plugin_name, unsigned int plugin_type,

char * const command_info[], char * const run_argv[],

char * const run_envp[], const char **errstr);

The accept() function is called when a command or action is accepted by a policy or approval

plugin. The function arguments are as follows:

plugin_name

The name of the plugin that accepted the command or "sudo" for the sudo front-end.

plugin_type

The type of plugin that accepted the command, currently either SUDO_POLICY_PLUGIN,

SUDO_POLICY_APPROVAL or SUDO_FRONT_END. The accept() function is called

multiple times--once for each policy or approval plugin that succeeds and once for the sudo

front-end. When called on behalf of the sudo front-end, command_info may include

information from an I/O logging plugin as well.

Typically, an audit plugin is interested in either the accept status from the sudo front-end or

from the various policy and approval plugins, but not both. It is possible for the policy

plugin to accept a command that is later rejected by an approval plugin, in which case the

audit plugin’s accept() and reject() functions will both be called.

command_info

A vector of information describing the command being run in the form of "name=value"

strings. The vector is terminated by a NULL pointer.

When parsing command_info, the plugin should split on the first equal sign (‘=’) since the

name field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible strings.

run_argv

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

A NULL-terminated argument vector describing a command that will be run in the same

form as what would be passed to the execve(2) system call.

run_envp

The environment the command will be run with in the form of a NULL-terminated vector of

"name=value" strings.

When parsing run_envp, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

errstr

If the accept() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

reject

int (*reject)(const char *plugin_name, unsigned int plugin_type,

const char *audit_msg, char * const command_info[],

const char **errstr);

The reject() function is called when a command or action is rejected by a plugin. The function

arguments are as follows:

plugin_name

The name of the plugin that rejected the command.

plugin_type

The type of plugin that rejected the command, currently either SUDO_POLICY_PLUGIN,

SUDO_APPROVAL_PLUGIN or SUDO_IO_PLUGIN.

Unlike the accept() function, the reject() function is not called on behalf of the sudo front-

end.

audit_msg

An optional string describing the reason the command was rejected by the plugin. If the

plugin did not provide a reason, audit_msg will be the NULL pointer.

command_info

A vector of information describing the command being run in the form of "name=value"

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

strings. The vector is terminated by a NULL pointer.

When parsing command_info, the plugin should split on the first equal sign (‘=’) since the

name field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible strings.

errstr

If the reject() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

error

int (*error)(const char *plugin_name, unsigned int plugin_type,

const char *audit_msg, char * const command_info[],

const char **errstr);

The error() function is called when a plugin or the sudo front-end returns an error. The function

arguments are as follows:

plugin_name

The name of the plugin that generated the error or "sudo" for the sudo front-end.

plugin_type

The type of plugin that generated the error, or SUDO_FRONT_END for the sudo front-end.

audit_msg

An optional string describing the plugin error. If the plugin did not provide a description,

audit_msg will be the NULL pointer.

command_info

A vector of information describing the command being run in the form of "name=value"

strings. The vector is terminated by a NULL pointer.

When parsing command_info, the plugin should split on the first equal sign (‘=’) since the

name field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible strings.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

errstr

If the error() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

show_version

int (*show_version)(int verbose);

The show_version() function is called by sudo when the user specifies the -V option. The plugin

may display its version information to the user via the conversation() or plugin_printf() function

using SUDO_CONV_INFO_MSG. If the user requests detailed version information, the verbose

flag will be set.

Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was a usage error,

although the return value is currently ignored.

register_hooks

See the Policy plugin API section for a description of register_hooks.

deregister_hooks

See the Policy plugin API section for a description of deregister_hooks.

Approval plugin API
struct approval_plugin {

#define SUDO_APPROVAL_PLUGIN 4

unsigned int type; /* always SUDO_APPROVAL_PLUGIN */

unsigned int version; /* always SUDO_API_VERSION */

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t sudo_printf, char * const settings[],

char * const user_info[], int submit_optind,

char * const submit_argv[], char * const submit_envp[],

char * const plugin_options[], const char **errstr);

void (*close)(void);

int (*check)(char * const command_info[], char * const run_argv[],

char * const run_envp[], const char **errstr);

int (*show_version)(int verbose);

};

An approval plugin can be used to apply extra constraints after a command has been accepted by the

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

policy plugin. Unlike the other plugin types, it does not remain open until the command completes. The

plugin is opened before a call to check() or show_version() and closed shortly thereafter (audit plugin

functions must be called before the plugin is closed). Multiple approval plugins may be specified in

sudo.conf(5).

The approval_plugin struct has the following fields:

type The type field should always be set to SUDO_APPROVAL_PLUGIN.

version

The version field should be set to SUDO_API_VERSION.

This allows sudo to determine the API version the plugin was built against.

open

int (*open)(unsigned int version, sudo_conv_t conversation,

sudo_printf_t sudo_printf, char * const settings[],

char * const user_info[], int submit_optind,

char * const submit_argv[], char * const submit_envp[],

char * const plugin_options[], const char **errstr);

The approval open() function is run immediately before a call to the plugin’s check() or

show_version() functions. It is only called if the version is being requested or if the policy

plugin’s check_policy() function has returned successfully. It returns 1 on success, 0 on failure, -1

if a general error occurred, or -2 if there was a usage error. In the latter case, sudo will print a

usage message before it exits. If an error occurs, the plugin may optionally call the conversation()

or plugin_printf() function with SUDO_CONF_ERROR_MSG to present additional error

information to the user.

The function arguments are as follows:

version

The version passed in by sudo allows the plugin to determine the major and minor version

number of the plugin API supported by sudo.

conversation

A pointer to the conversation() function that can be used by the plugin to interact with the

user (see Conversation API for details). Returns 0 on success and -1 on failure.

plugin_printf

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

A pointer to a printf()-style function that may be used to display informational or error

messages (see Conversation API for details). Returns the number of characters printed on

success and -1 on failure.

settings

A vector of user-supplied sudo settings in the form of "name=value" strings. The vector is

terminated by a NULL pointer. These settings correspond to options the user specified

when running sudo. As such, they will only be present when the corresponding option has

been specified on the command line.

When parsing settings, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible settings.

user_info

A vector of information about the user running the command in the form of "name=value"

strings. The vector is terminated by a NULL pointer.

When parsing user_info, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

See the Policy plugin API section for a list of all possible strings.

submit_optind

The index into submit_argv that corresponds to the first entry that is not a command line

option. If submit_argv only consists of options, which may be the case with the -l or -v
options, submit_argv[submit_optind] will evaluate to the NULL pointer.

submit_argv

The argument vector sudo was invoked with, including all command line options. The

submit_optind argument can be used to determine the end of the command line options.

submit_envp

The invoking user’s environment in the form of a NULL-terminated vector of

"name=value" strings.

When parsing submit_envp, the plugin should split on the first equal sign (‘=’) since the

name field will never include one itself but the value might.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

plugin_options

Any (non-comment) strings immediately after the plugin path are treated as arguments to

the plugin. These arguments are split on a white space boundary and are passed to the

plugin in the form of a NULL-terminated array of strings. If no arguments were specified,

plugin_options will be the NULL pointer.

errstr

If the open() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

close

void (*close)(void);

The close() function is called after the approval plugin’s check() or show_version() functions have

been called. It takes no arguments. The close() function is typically used to perform plugin-

specific cleanup, such as the freeing of memory objects allocated by the plugin. If the plugin does

not need to perform any cleanup, close() may be set to the NULL pointer.

check

int (*check)(char * const command_info[], char * const run_argv[],

char * const run_envp[], const char **errstr);

The approval check() function is run after the policy plugin check_policy() function and before

any I/O logging plugins. If multiple approval plugins are loaded, they must all succeed for the

command to be allowed. It returns 1 on success, 0 on failure, -1 if a general error occurred, or -2

if there was a usage error. In the latter case, sudo will print a usage message before it exits. If an

error occurs, the plugin may optionally call the conversation() or plugin_printf() function with

SUDO_CONF_ERROR_MSG to present additional error information to the user.

The function arguments are as follows:

command_info

A vector of information describing the command being run in the form of "name=value"

strings. The vector is terminated by a NULL pointer.

When parsing command_info, the plugin should split on the first equal sign (‘=’) since the

name field will never include one itself but the value might.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

See the Policy plugin API section for a list of all possible strings.

run_argv

A NULL-terminated argument vector describing a command that will be run in the same

form as what would be passed to the execve(2) system call.

run_envp

The environment the command will be run with in the form of a NULL-terminated vector of

"name=value" strings.

When parsing run_envp, the plugin should split on the first equal sign (‘=’) since the name

field will never include one itself but the value might.

errstr

If the open() function returns a value other than 1, the plugin may store a message

describing the failure or error in errstr. The sudo front end will then pass this value to any

registered audit plugins. The string stored in errstr must remain valid until the plugin’s

close() function is called.

show_version

int (*show_version)(int verbose);

The show_version() function is called by sudo when the user specifies the -V option. The plugin

may display its version information to the user via the conversation() or plugin_printf() function

using SUDO_CONV_INFO_MSG. If the user requests detailed version information, the verbose

flag will be set.

Returns 1 on success, 0 on failure, -1 if a general error occurred, or -2 if there was a usage error,

although the return value is currently ignored.

Signal handlers
The sudo front end installs default signal handlers to trap common signals while the plugin functions are

run. The following signals are trapped by default before the command is executed:

+o SIGALRM

+o SIGHUP

+o SIGINT

+o SIGPIPE

+o SIGQUIT

+o SIGTERM

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

+o SIGTSTP

+o SIGUSR1

+o SIGUSR2

If a fatal signal is received before the command is executed, sudo will call the plugin’s close() function

with an exit status of 128 plus the value of the signal that was received. This allows for consistent

logging of commands killed by a signal for plugins that log such information in their close() function.

An exception to this is SIGPIPE, which is ignored until the command is executed.

A plugin may temporarily install its own signal handlers but must restore the original handler before the

plugin function returns.

Hook function API
Beginning with plugin API version 1.2, it is possible to install hooks for certain functions called by the

sudo front end.

Currently, the only supported hooks relate to the handling of environment variables. Hooks can be used

to intercept attempts to get, set, or remove environment variables so that these changes can be reflected

in the version of the environment that is used to execute a command. A future version of the API will

support hooking internal sudo front end functions as well.

Hook structure

Hooks in sudo are described by the following structure:

typedef int (*sudo_hook_fn_t)();

struct sudo_hook {

unsigned int hook_version;

unsigned int hook_type;

sudo_hook_fn_t hook_fn;

void *closure;

};

The sudo_hook structure has the following fields:

hook_version

The hook_version field should be set to SUDO_HOOK_VERSION.

hook_type

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

The hook_type field may be one of the following supported hook types:

SUDO_HOOK_SETENV

The C library setenv(3) function. Any registered hooks will run before the C library

implementation. The hook_fn field should be a function that matches the following

typedef:

typedef int (*sudo_hook_fn_setenv_t)(const char *name,

const char *value, int overwrite, void *closure);

If the registered hook does not match the typedef the results are unspecified.

SUDO_HOOK_UNSETENV

The C library unsetenv(3) function. Any registered hooks will run before the C library

implementation. The hook_fn field should be a function that matches the following

typedef:

typedef int (*sudo_hook_fn_unsetenv_t)(const char *name,

void *closure);

SUDO_HOOK_GETENV

The C library getenv(3) function. Any registered hooks will run before the C library

implementation. The hook_fn field should be a function that matches the following

typedef:

typedef int (*sudo_hook_fn_getenv_t)(const char *name,

char **value, void *closure);

If the registered hook does not match the typedef the results are unspecified.

SUDO_HOOK_PUTENV

The C library putenv(3) function. Any registered hooks will run before the C library

implementation. The hook_fn field should be a function that matches the following

typedef:

typedef int (*sudo_hook_fn_putenv_t)(char *string,

void *closure);

If the registered hook does not match the typedef the results are unspecified.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

hook_fn

sudo_hook_fn_t hook_fn;

The hook_fn field should be set to the plugin’s hook implementation. The actual function

arguments will vary depending on the hook_type (see hook_type above). In all cases, the closure

field of struct sudo_hook is passed as the last function parameter. This can be used to pass

arbitrary data to the plugin’s hook implementation.

The function return value may be one of the following:

SUDO_HOOK_RET_ERROR

The hook function encountered an error.

SUDO_HOOK_RET_NEXT

The hook completed without error, go on to the next hook (including the native

implementation if applicable). For example, a getenv(3) hook might return

SUDO_HOOK_RET_NEXT if the specified variable was not found in the private copy of

the environment.

SUDO_HOOK_RET_STOP

The hook completed without error, stop processing hooks for this invocation. This can be

used to replace the native implementation. For example, a setenv hook that operates on a

private copy of the environment but leaves environ unchanged.

Note that it is very easy to create an infinite loop when hooking C library functions. For example, a

getenv(3) hook that calls the snprintf(3) function may create a loop if the snprintf(3) implementation

calls getenv(3) to check the locale. To prevent this, you may wish to use a static variable in the hook

function to guard against nested calls. For example:

static int in_progress = 0; /* avoid recursion */

if (in_progress)

return SUDO_HOOK_RET_NEXT;

in_progress = 1;

...

in_progress = 0;

return SUDO_HOOK_RET_STOP;

Hook API Version Macros

/* Hook API version major/minor */

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

#define SUDO_HOOK_VERSION_MAJOR 1

#define SUDO_HOOK_VERSION_MINOR 0

#define SUDO_HOOK_VERSION SUDO_API_MKVERSION(SUDO_HOOK_VERSION_MAJOR,\

SUDO_HOOK_VERSION_MINOR)

For getters and setters see the Policy plugin API.

Event API
When sudo runs a command, it uses an event loop to service signals and I/O. Events may be triggered

based on time, a file or socket descriptor becoming ready, or due to receipt of a signal. Starting with

API version 1.15, it is possible for a plugin to participate in this event loop by calling the event_alloc()

function.

Event structure

Events are described by the following structure:

typedef void (*sudo_plugin_ev_callback_t)(int fd, int what, void *closure);

struct sudo_plugin_event {

int (*set)(struct sudo_plugin_event *pev, int fd, int events,

sudo_plugin_ev_callback_t callback, void *closure);

int (*add)(struct sudo_plugin_event *pev, struct timespec *timeout);

int (*del)(struct sudo_plugin_event *pev);

int (*pending)(struct sudo_plugin_event *pev, int events,

struct timespec *ts);

int (*fd)(struct sudo_plugin_event *pev);

void (*setbase)(struct sudo_plugin_event *pev, void *base);

void (*loopbreak)(struct sudo_plugin_event *pev);

void (*free)(struct sudo_plugin_event *pev);

};

The sudo_plugin_event struct contains the following function pointers:

set()
int (*set)(struct sudo_plugin_event *pev, int fd, int events,

sudo_plugin_ev_callback_t callback, void *closure);

The set() function takes the following arguments:

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

struct sudo_plugin_event *pev

A pointer to the struct sudo_plugin_event itself.

fd The file or socket descriptor for I/O-based events or the signal number for signal events.

For time-based events, fd must be -1.

events

The following values determine what will trigger the event callback:

SUDO_PLUGIN_EV_TIMEOUT

callback is run after the specified timeout expires

SUDO_PLUGIN_EV_READ

callback is run when the file descriptor is readable

SUDO_PLUGIN_EV_WRITE

callback is run when the file descriptor is writable

SUDO_PLUGIN_EV_PERSIST

event is persistent and remains enabled until explicitly deleted

SUDO_PLUGIN_EV_SIGNAL

callback is run when the specified signal is received

The SUDO_PLUGIN_EV_PERSIST flag may be ORed with any of the event types. It is

also possible to OR SUDO_PLUGIN_EV_READ and SUDO_PLUGIN_EV_WRITE

together to run the callback when a descriptor is ready to be either read from or written to.

All other event values are mutually exclusive.

sudo_plugin_ev_callback_t callback

typedef void (*sudo_plugin_ev_callback_t)(int fd, int what,

void *closure);

The function to call when an event is triggered. The callback() function is run with the

following arguments:

fd The file or socket descriptor for I/O-based events or the signal number for signal

events.

what The event type that triggered that callback. For events that have multiple event types

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

(for example SUDO_PLUGIN_EV_READ and SUDO_PLUGIN_EV_WRITE) or

have an associated timeout, what can be used to determine why the callback was run.

closure

The generic pointer that was specified in the set() function.

closure

A generic pointer that will be passed to the callback function.

The set() function returns 1 on success, and -1 if a error occurred.

add()

int (*add)(struct sudo_plugin_event *pev, struct timespec *timeout);

The add() function adds the event pev to sudo’s event loop. The event must have previously been

initialized via the set() function. If the timeout argument is not NULL, it should specify a

(relative) timeout after which the event will be triggered if the main event criteria has not been

met. This is often used to implement an I/O timeout where the event will fire if a descriptor is not

ready within a certain time period. If the event is already present in the event loop, its timeout

will be adjusted to match the new value, if any.

The add() function returns 1 on success, and -1 if a error occurred.

del()
int (*del)(struct sudo_plugin_event *pev);

The del() function deletes the event pev from sudo’s event loop. Deleted events can be added

back via the add() function.

The del() function returns 1 on success, and -1 if a error occurred.

pending()

int (*pending)(struct sudo_plugin_event *pev, int events,

struct timespec *ts);

The pending() function can be used to determine whether one or more events is pending. The

events argument specifies which events to check for. See the set() function for a list of valid event

types. If SUDO_PLUGIN_EV_TIMEOUT is specified in events, the event has an associated

timeout and the ts pointer is non-NULL, it will be filled in with the remaining time.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

fd()

int (*fd)(struct sudo_plugin_event *pev);

The fd() function returns the descriptor or signal number associated with the event pev.

setbase()

void (*setbase)(struct sudo_plugin_event *pev, void *base);

The setbase() function sets the underlying event base for pev to the specified value. This can be

used to move an event created via event_alloc() to a new event loop allocated by sudo’s event

subsystem. If base is NULL, pev’s event base is reset to the default value, which corresponds to

sudo’s main event loop. Using this function requires linking the plugin with the sudo_util library.

It is unlikely to be used outside of the sudoers plugin.

loopbreak()

void (*loopbreak)(struct sudo_plugin_event *pev);

The loopbreak() function causes sudo’s event loop to exit immediately and the running command

to be terminated.

free()

void (*free)(struct sudo_plugin_event *pev);

The free() function deletes the event pev from the event loop and frees the memory associated

with it.

Remote command execution
The sudo front end does not have native support for running remote commands. However, starting with

sudo 1.8.8, the -h option may be used to specify a remote host that is passed to the policy plugin. A

plugin may also accept a runas_user in the form of "user@hostname" which will work with older

versions of sudo. It is anticipated that remote commands will be supported by executing a "helper"

program. The policy plugin should setup the execution environment such that the sudo front end will

run the helper which, in turn, will connect to the remote host and run the command.

For example, the policy plugin could utilize ssh to perform remote command execution. The helper

program would be responsible for running ssh with the proper options to use a private key or certificate

that the remote host will accept and run a program on the remote host that would setup the execution

environment accordingly.

Note that remote sudoedit functionality must be handled by the policy plugin, not sudo itself as the front

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

end has no knowledge that a remote command is being executed. This may be addressed in a future

revision of the plugin API.

Conversation API
If the plugin needs to interact with the user, it may do so via the conversation() function. A plugin

should not attempt to read directly from the standard input or the user’s tty (neither of which are

guaranteed to exist). The caller must include a trailing newline in msg if one is to be printed.

A printf()-style function is also available that can be used to display informational or error messages to

the user, which is usually more convenient for simple messages where no use input is required.

Conversation function structures

The conversation function takes as arguments pointers to the following structures:

struct sudo_conv_message {

#define SUDO_CONV_PROMPT_ECHO_OFF 0x0001 /* do not echo user input */

#define SUDO_CONV_PROMPT_ECHO_ON 0x0002 /* echo user input */

#define SUDO_CONV_ERROR_MSG 0x0003 /* error message */

#define SUDO_CONV_INFO_MSG 0x0004 /* informational message */

#define SUDO_CONV_PROMPT_MASK 0x0005 /* mask user input */

#define SUDO_CONV_PROMPT_ECHO_OK 0x1000 /* flag: allow echo if no tty */

#define SUDO_CONV_PREFER_TTY 0x2000 /* flag: use tty if possible */

int msg_type;

int timeout;

const char *msg;

};

#define SUDO_CONV_REPL_MAX 1023

struct sudo_conv_reply {

char *reply;

};

typedef int (*sudo_conv_callback_fn_t)(int signo, void *closure);

struct sudo_conv_callback {

unsigned int version;

void *closure;

sudo_conv_callback_fn_t on_suspend;

sudo_conv_callback_fn_t on_resume;

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

};

Pointers to the conversation() and printf()-style functions are passed in to the plugin’s open() function

when the plugin is initialized. The following type definitions can be used in the declaration of the

open() function:

typedef int (*sudo_conv_t)(int num_msgs,

const struct sudo_conv_message msgs[],

struct sudo_conv_reply replies[], struct sudo_conv_callback *callback);

typedef int (*sudo_printf_t)(int msg_type, const char *fmt, ...);

To use the conversation() function, the plugin must pass an array of sudo_conv_message and

sudo_conv_reply structures. There must be a struct sudo_conv_message and struct sudo_conv_reply for

each message in the conversation, that is, both arrays must have the same number of elements. Each

struct sudo_conv_reply must have its reply member initialized to NULL. The struct

sudo_conv_callback pointer, if not NULL, should contain function pointers to be called when the sudo
process is suspended and/or resumed during conversation input. The on_suspend and on_resume

functions are called with the signal that caused sudo to be suspended and the closure pointer from the

struct sudo_conv_callback. These functions should return 0 on success and -1 on error. On error, the

conversation will end and the conversation function will return a value of -1. The intended use is to

allow the plugin to release resources, such as locks, that should not be held indefinitely while suspended

and then reacquire them when the process is resumed. Note that the functions are not actually invoked

from within a signal handler.

The msg_type must be set to one of the following values:

SUDO_CONV_PROMPT_ECHO_OFF

Prompt the user for input with echo disabled; this is generally used for passwords. The reply will

be stored in the replies array, and it will never be NULL.

SUDO_CONV_PROMPT_ECHO_ON

Prompt the user for input with echo enabled. The reply will be stored in the replies array, and it

will never be NULL.

SUDO_CONV_ERROR_MSG

Display an error message. The message is written to the standard error unless the

SUDO_CONV_PREFER_TTY flag is set, in which case it is written to the user’s terminal if

possible.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

SUDO_CONV_INFO_MSG

Display a message. The message is written to the standard output unless the

SUDO_CONV_PREFER_TTY flag is set, in which case it is written to the user’s terminal if

possible.

SUDO_CONV_PROMPT_MASK

Prompt the user for input but echo an asterisk character for each character read. The reply will be

stored in the replies array, and it will never be NULL. This can be used to provide visual

feedback to the user while reading sensitive information that should not be displayed.

In addition to the above values, the following flag bits may also be set:

SUDO_CONV_PROMPT_ECHO_OK

Allow input to be read when echo cannot be disabled when the message type is

SUDO_CONV_PROMPT_ECHO_OFF or SUDO_CONV_PROMPT_MASK. By default, sudo
will refuse to read input if the echo cannot be disabled for those message types.

SUDO_CONV_PREFER_TTY

When displaying a message via SUDO_CONV_ERROR_MSG or SUDO_CONV_INFO_MSG,

try to write the message to the user’s terminal. If the terminal is unavailable, the standard error or

standard output will be used, depending upon whether The user’s terminal is always used when

possible for input, this flag is only used for output. SUDO_CONV_ERROR_MSG or

SUDO_CONV_INFO_MSG was used.

The timeout in seconds until the prompt will wait for no more input. A zero value implies an infinite

timeout.

The plugin is responsible for freeing the reply buffer located in each struct sudo_conv_reply, if it is not

NULL. SUDO_CONV_REPL_MAX represents the maximum length of the reply buffer (not including

the trailing NUL character). In practical terms, this is the longest password sudo will support.

The printf()-style function uses the same underlying mechanism as the conversation() function but only

supports SUDO_CONV_INFO_MSG and SUDO_CONV_ERROR_MSG for the msg_type parameter.

It can be more convenient than using the conversation() function if no user reply is needed and supports

standard printf() escape sequences.

See the sample plugin for an example of the conversation() function usage.

Plugin invocation order
As of sudo 1.9.0, the plugin open() and close() functions are called in the following order:

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

1. audit open

2. policy open

3. approval open

4. approval close

5. I/O log open

6. command runs

7. command exits

8. I/O log close

9. policy close

10. audit close

11. sudo exits

Prior to sudo 1.9.0, the I/O log close() function was called after the policy close() function.

Sudoers group plugin API
The sudoers plugin supports its own plugin interface to allow non-Unix group lookups. This can be

used to query a group source other than the standard Unix group database. Two sample group plugins

are bundled with sudo, group_file and system_group, are detailed in sudoers(5). Third party group

plugins include a QAS AD plugin available from Quest Software.

A group plugin must declare and populate a sudoers_group_plugin struct in the global scope. This

structure contains pointers to the functions that implement plugin initialization, cleanup and group

lookup.

struct sudoers_group_plugin {

unsigned int version;

int (*init)(int version, sudo_printf_t sudo_printf,

char *const argv[]);

void (*cleanup)(void);

int (*query)(const char *user, const char *group,

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

const struct passwd *pwd);

};

The sudoers_group_plugin struct has the following fields:

version

The version field should be set to GROUP_API_VERSION.

This allows sudoers to determine the API version the group plugin was built against.

init

int (*init)(int version, sudo_printf_t plugin_printf,

char *const argv[]);

The init() function is called after sudoers has been parsed but before any policy checks. It returns

1 on success, 0 on failure (or if the plugin is not configured), and -1 if a error occurred. If an error

occurs, the plugin may call the plugin_printf() function with SUDO_CONF_ERROR_MSG to

present additional error information to the user.

The function arguments are as follows:

version

The version passed in by sudoers allows the plugin to determine the major and minor

version number of the group plugin API supported by sudoers.

plugin_printf

A pointer to a printf()-style function that may be used to display informational or error

message to the user. Returns the number of characters printed on success and -1 on failure.

argv A NULL-terminated array of arguments generated from the group_plugin option in sudoers.

If no arguments were given, argv will be NULL.

cleanup

void (*cleanup)();

The cleanup() function is called when sudoers has finished its group checks. The plugin should

free any memory it has allocated and close open file handles.

query

int (*query)(const char *user, const char *group,

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

const struct passwd *pwd);

The query() function is used to ask the group plugin whether user is a member of group.

The function arguments are as follows:

user The name of the user being looked up in the external group database.

group

The name of the group being queried.

pwd The password database entry for user, if any. If user is not present in the password

database, pwd will be NULL.

Group API Version Macros

/* Sudoers group plugin version major/minor */

#define GROUP_API_VERSION_MAJOR 1

#define GROUP_API_VERSION_MINOR 0

#define GROUP_API_VERSION ((GROUP_API_VERSION_MAJOR << 16) | \

GROUP_API_VERSION_MINOR)

For getters and setters see the Policy plugin API.

PLUGIN API CHANGELOG
The following revisions have been made to the Sudo Plugin API.

Version 1.0

Initial API version.

Version 1.1 (sudo 1.8.0)

The I/O logging plugin’s open() function was modified to take the command_info list as an

argument.

Version 1.2 (sudo 1.8.5)

The Policy and I/O logging plugins’ open() functions are now passed a list of plugin parameters if

any are specified in sudo.conf(5).

A simple hooks API has been introduced to allow plugins to hook in to the system’s environment

handling functions.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

The init_session Policy plugin function is now passed a pointer to the user environment which can

be updated as needed. This can be used to merge in environment variables stored in the PAM

handle before a command is run.

Version 1.3 (sudo 1.8.7)

Support for the exec_background entry has been added to the command_info list.

The max_groups and plugin_dir entries were added to the settings list.

The version() and close() functions are now optional. Previously, a missing version() or close()

function would result in a crash. If no policy plugin close() function is defined, a default close()

function will be provided by the sudo front end that displays a warning if the command could not

be executed.

The sudo front end now installs default signal handlers to trap common signals while the plugin

functions are run.

Version 1.4 (sudo 1.8.8)

The remote_host entry was added to the settings list.

Version 1.5 (sudo 1.8.9)

The preserve_fds entry was added to the command_info list.

Version 1.6 (sudo 1.8.11)

The behavior when an I/O logging plugin returns an error (-1) has changed. Previously, the sudo
front end took no action when the log_ttyin(), log_ttyout(), log_stdin(), log_stdout(), or

log_stderr() function returned an error.

The behavior when an I/O logging plugin returns 0 has changed. Previously, output from the

command would be displayed to the terminal even if an output logging function returned 0.

Version 1.7 (sudo 1.8.12)

The plugin_path entry was added to the settings list.

The debug_flags entry now starts with a debug file path name and may occur multiple times if

there are multiple plugin-specific Debug lines in the sudo.conf(5) file.

Version 1.8 (sudo 1.8.15)

The sudoedit_checkdir and sudoedit_follow entries were added to the command_info list. The

default value of sudoedit_checkdir was changed to true in sudo 1.8.16.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

The sudo conversation function now takes a pointer to a struct sudo_conv_callback as its fourth

argument. The sudo_conv_t definition has been updated to match. The plugin must specify that it

supports plugin API version 1.8 or higher to receive a conversation function pointer that supports

this argument.

Version 1.9 (sudo 1.8.16)

The execfd entry was added to the command_info list.

Version 1.10 (sudo 1.8.19)

The umask entry was added to the user_info list. The iolog_group, iolog_mode, and iolog_user

entries were added to the command_info list.

Version 1.11 (sudo 1.8.20)

The timeout entry was added to the settings list.

Version 1.12 (sudo 1.8.21)

The change_winsize field was added to the io_plugin struct.

Version 1.13 (sudo 1.8.26)

The log_suspend field was added to the io_plugin struct.

Version 1.14 (sudo 1.8.29)

The umask_override entry was added to the command_info list.

Version 1.15 (sudo 1.9.0)

The cwd_optional entry was added to the command_info list.

The event_alloc field was added to the policy_plugin and io_plugin structs.

The errstr argument was added to the policy and I/O plugin functions which the plugin function

can use to return an error string. This string may be used by the audit plugin to report failure or

error conditions set by the other plugins.

The close() function is now is called regardless of whether or not a command was actually

executed. This makes it possible for plugins to perform cleanup even when a command was not

run.

SUDO_CONV_REPL_MAX has increased from 255 to 1023 bytes.

Support for audit and approval plugins was added.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

Version 1.16 (sudo 1.9.3)

Initial resource limit values were added to the user_info list.

The cmnd_chroot and cmnd_cwd enties were added to the settings list.

SEE ALSO
sudo.conf(5), sudoers(5), sudo(8)

AUTHORS
Many people have worked on sudo over the years; this version consists of code written primarily by:

Todd C. Miller

See the CONTRIBUTORS file in the sudo distribution (https://www.sudo.ws/contributors.html) for an

exhaustive list of people who have contributed to sudo.

BUGS
If you feel you have found a bug in sudo, please submit a bug report at https://bugzilla.sudo.ws/

SUPPORT
Limited free support is available via the sudo-users mailing list, see

https://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives.

DISCLAIMER
sudo is provided "AS IS" and any express or implied warranties, including, but not limited to, the

implied warranties of merchantability and fitness for a particular purpose are disclaimed. See the

LICENSE file distributed with sudo or https://www.sudo.ws/license.html for complete details.

SUDO_PLUGIN(5) File Formats Manual SUDO_PLUGIN(5)

Sudo 1.9.3 August 31, 2020 Sudo 1.9.3

